P1216 数字金字塔

本文介绍了一个经典的动态规划问题——数字金字塔。通过使用二维数组f[i][j]表示从顶点(1,1)到(i,j)的最大权值和,利用递推公式f[i][j]=max(f[i-1][j],f[i-1][j-1])+a[i][j]求解。文章给出了完整的C++代码实现,并讨论了如何调整算法以应对结果需要取模的情况。
摘要由CSDN通过智能技术生成

P1216  数字金字塔

我们可以用 f [ i ] [ j ] 表示从(1,1)出发,到达(i,j)的最大权值和。

 

(i , j)可以由 正上(i - 1 , j)或者 左上(i - 1 , j - 1)转化来,所以要求这二者的最大值。

 

转移方程为:

 f [ i ] [ j ] = max ( f [ i - 1 ] [ j ] , f [ i - 1 ] [ j - 1 ] ) + a [ i ] [ j ] ;

 

边界为f [ 1 ] [ 1 ] = a [ 1 ] [ 1 ] ; 

 

 

DP代码

#include<iostream>
#include<cstdio>
#include<cmath> 
#include<algorithm>
using namespace std;
int n,a[10000][10000],f[10000][10000],ans;
int main()
{    
    cin>>n;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=i;j++)
      cin>>a[i][j];

    f[1][1]=a[1][1];       //边界条件
 
    for(int i=2;i<=n;i++)
      for(int j=1;j<=i;j++)
      f[i][j]=max(f[i-1][j],f[i-1][j-1])+a[i][j];

    ans=f[n][1];

    for(int i=2;i<=n;i++)
      ans=max(f[n][i],ans);

    cout<<ans;
    return 0;
}

 

 

 

 

变形:

使得结果%m以后最大

 https://vijos.org/

我们可以用 f [ i ] [ j ] 表示从(1,1)出发,到达(i,j)%m 的最大权值和。

 

之前最大,不能保证%m后最大

 

 

当你发现做不出来,就加一个维度一直加,一直加

 

 

 

只要有一种是TRUE,那它就是

 

最后一行找一个最大的数

 

 

 边界条件

 

 

 

转载于:https://www.cnblogs.com/xiaoyezi-wink/p/10605418.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值