我们可以用 f [ i ] [ j ] 表示从(1,1)出发,到达(i,j)的最大权值和。
(i , j)可以由 正上(i - 1 , j)或者 左上(i - 1 , j - 1)转化来,所以要求这二者的最大值。
转移方程为:
f [ i ] [ j ] = max ( f [ i - 1 ] [ j ] , f [ i - 1 ] [ j - 1 ] ) + a [ i ] [ j ] ;
边界为f [ 1 ] [ 1 ] = a [ 1 ] [ 1 ] ;
DP代码
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> using namespace std; int n,a[10000][10000],f[10000][10000],ans; int main() { cin>>n; for(int i=1;i<=n;i++) for(int j=1;j<=i;j++) cin>>a[i][j]; f[1][1]=a[1][1]; //边界条件 for(int i=2;i<=n;i++) for(int j=1;j<=i;j++) f[i][j]=max(f[i-1][j],f[i-1][j-1])+a[i][j]; ans=f[n][1]; for(int i=2;i<=n;i++) ans=max(f[n][i],ans); cout<<ans; return 0; }
变形:
使得结果%m以后最大
我们可以用 f [ i ] [ j ] 表示从(1,1)出发,到达(i,j)%m 的最大权值和。
之前最大,不能保证%m后最大
当你发现做不出来,就加一个维度一直加,一直加
只要有一种是TRUE,那它就是
最后一行找一个最大的数
边界条件