1067 - Combinations

1067 - Combinations
Time Limit: 2 second(s)Memory Limit: 32 MB

Given n different objects, you want to take k of them. How many ways to can do it?

For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

Take 1, 2

Take 1, 3

Take 1, 4

Take 2, 3

Take 2, 4

Take 3, 4

Input

Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

Output

For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input

Output for Sample Input

3

4 2

5 0

6 4

Case 1: 6

Case 2: 1

Case 3: 15

 


Problem Setter: Jane Alam Jan
思路:费马小定理。
这个是组合数取模,有卢卡斯定理可以解决,但还没学,所以用费马小定理和快速幂水了一发。
当然先打表求阶乘取模,然后根据组合数公式C n m=(m!)/((n!)*(m-n)!);
由于所给的数是1000003,素数,(n!)*(m-n)!,不能整除,根据(p/q)%N=k%N;其中k为所要求的数,
那么可以得到(p)%N=k*q%N;所以用费马小定理求下q的逆元就可以了,复杂度(N*log(N));
 1 #include<stdio.h>
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<math.h>
 5 #include<stdlib.h>
 6 #include<string.h>
 7 using namespace std;
 8 typedef long long LL;
 9 const long long N=1e6+3;
10 long long MM[1000005];
11 long long quick(long long n,long m);
12 int main(void)
13 {
14     long long p,q;MM[0]=1;
15     MM[1]=1;int i,j;
16     for(i=2;i<=1000000;i++)
17     {
18         MM[i]=(MM[i-1]%N*(i))%N;
19     }int v;
20     scanf("%d",&v);
21     for(j=1;j<=v;j++)
22     {scanf("%lld %lld",&p,&q);
23         long long x=MM[q]*MM[p-q]%N;
24         long long cc=quick(x,N-2);
25         long long ans=MM[p]*cc%N;
26         printf("Case %d: ",j);
27         printf("%lld\n",ans);
28     }
29     return 0;
30 }
31 
32 long long quick(long long n,long m)
33 {
34     long long k=1;
35     while(m)
36     {
37         if(m&1)
38         {
39             k=(k%N*n%N)%N;
40         }
41         n=n*n%N;
42         m/=2;
43     }
44     return k;
45 }

 

转载于:https://www.cnblogs.com/zzuli2sjy/p/5342706.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值