软件测试作业3

/**
     * Finds and prints n prime integers
     * Jeff Offutt, Spring 2003
     */


    private static void printPrimes(int n) {
        int curPrime; //Value currently considered for primeness
        int numPrimes; // Number of primes found so far;
        boolean isPrime; //Is curPrime prime?
        int[] primes = new int[MAXPRIMES];// The list of primes.
        
        // Initialize 2 into the list of primes.
        primes[0] = 2;
        numPrimes = 1;
        curPrime = 2;

        while(numPrimes < n) {
            curPrime++; // next number to consider...
            isPrime = true;
            for(int i = 0; i < numPrimes; i++ ) {
                //for each previous prime.
                if(isDvisible(primes[i],curPrime)) {
                    //Found a divisor, curPrime is not prime.
                    isPrime = false;
                    break;
                }
            }
            if(isPrime) {
                // save it!
                primes[numPrimes] = curPrime;
                numPrimes++;
            
            }
        }// End while
        
        // print all the primes out
        for(int i = 0; i < numPrimes; i++) {
            System.out.println("Prime: " + primes[i] );

        }
        
    }// End printPrimes.


(a) Draw the control flow graph for the printPrime() method.

(b) Consider test cases ti = (n = 3) and t2 = ( n = 5). Although these tour the same prime paths in printPrime(), they don't necessarily find
the same faults. Design a simple fault that t2 would be more likely to discover than t1 would.

令MAXPRIMES=4,则在n=3时没有错误,n=5时发生数组越界

(c) For printPrime(), find a test case such that the corresponding test path visits the edge that connects the beginning of the while statement
to the for statement without going through the body of the while loop.

t3(n=1)

(d) Enumerate the test requirements for node coverage, edge coverage,and prime path coverage for the path for printPrimes().

 node coverage

TR={1,2,3,4,5,6,7,8,9,10,11,12,13}

edge coverage

TR={(1,2),(2,3),(2,11),(3,4),(4,5),(5,6),(5,9),(6,7),(6,8),(7,5),(8,5),(9,10),(9,2),(10,2),(11,12),(11,13),(12,11)}

prime path coverage

TR={

[1,2,3,4,5,6,7]

[1,2,3,4,5,6,8]

[1,2,3,5,9]

[1,2,3,5,9,10]

[1,2,11,12]

[1,2,11,13]

[2,3,4,5,6,7,2]

[2,3,4,5,6,8,2]

[2,3,4,5,9,10,2]

[2,3,4,5,9,2]

[3,4,5,9,10,2,3]

[3,4,5,9,2,3]

[3,4,5,9,2,11,12]

[3,4,5,9,2,11,13]

[3,4,5,9,10,2,11,12]

[3,4,5,9,10,2,11,13]

[5,6,7,5]

[5,6,8,5]

[6,7,5,6]

[6.8.5.6]

[6,7,5,9,2,11,12]

[6,7,5,9,2,11,13]

[6,7,5,9,10,2,11,12]

[6,7,5,9,10,2,11,13]

[6,8,5,9,2,11,12]

[6,8,5,9,2,11,13]

[6,8,5,9,10,2,11,12]

[6,8,5,9,10,2,11,13]

[7,5,6,7]

[8,5,6,8]

[9,2,3,4,5,9]

[9,10,2,3,4,5,9]

[10,2,3,4,5,9,10]

[11,12,11]

[12,11,12]

[12,11,13]

}

 

基于Junit 及Eclemma (jacoco )实现一个主路径覆盖的测试。

package Prime;

public class Prime {
    public int curPrime; //Value currently considered for primeness
    public int numPrimes; // Number of primes found so far;
    public boolean isPrime; //Is curPrime prime?
    public int[] primes = new int[9999];// The list of primes.
    
   
    public void printPrimes( int n) {
        
         // Initialize 2 into the list of primes.
        primes[0] = 2;
        numPrimes = 1;
        curPrime = 2;
        while(numPrimes < n) {
            curPrime++; // next number to consider...
            isPrime = true;
            for(int i = 0; i < numPrimes; i++ ) {
                //for each previous prime.
                if(isDvisible(primes[i],curPrime)) {
                    //Found a divisor, curPrime is not prime.
                    isPrime = false;
                    break;
                }
            }
            if(isPrime) {
                // save it!
                primes[numPrimes] = curPrime;
                numPrimes++;
            
            }
        }// End while
        // print all the primes out
        for(int i = 0; i < numPrimes; i++) {
            System.out.println("Prime: " + primes[i] );
        }
    }// End printPrimes.
    private static boolean isDvisible(int prime, int curPrime) {
        if (curPrime % prime == 0) {
            return true;
        } else
            return false;
    }
    public String getstr() {
        // TODO Auto-generated method stub
        String str="";
        for(int i = 0; i < numPrimes; i++) {
            str+="Prime: " + primes[i]+";";
        }
        return str;
    }
}
package Prime;

import static org.junit.Assert.*;
import java.io.ByteArrayOutputStream;
import java.io.PrintStream;
import org.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;
import org.junit.runner.RunWith;



public class testPri {
    public Prime prime = new Prime();
    
    @Test
    public void TestNormal(){
        String str=new String("Prime: 2;Prime: 3;Prime: 5;Prime: 7;Prime: 11;");
        prime.printPrimes(5);
        assertEquals(str,prime.getstr());

    }

}

 

测试结果

 

转载于:https://www.cnblogs.com/dreameryu/p/8649886.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值