/** * Finds and prints n prime integers * Jeff Offutt, Spring 2003 */ private static void printPrimes(int n) { int curPrime; //Value currently considered for primeness int numPrimes; // Number of primes found so far; boolean isPrime; //Is curPrime prime? int[] primes = new int[MAXPRIMES];// The list of primes. // Initialize 2 into the list of primes. primes[0] = 2; numPrimes = 1; curPrime = 2; while(numPrimes < n) { curPrime++; // next number to consider... isPrime = true; for(int i = 0; i < numPrimes; i++ ) { //for each previous prime. if(isDvisible(primes[i],curPrime)) { //Found a divisor, curPrime is not prime. isPrime = false; break; } } if(isPrime) { // save it! primes[numPrimes] = curPrime; numPrimes++; } }// End while // print all the primes out for(int i = 0; i < numPrimes; i++) { System.out.println("Prime: " + primes[i] ); } }// End printPrimes.
(a) Draw the control flow graph for the printPrime() method.
(b) Consider test cases ti = (n = 3) and t2 = ( n = 5). Although these tour the same prime paths in printPrime(), they don't necessarily find
the same faults. Design a simple fault that t2 would be more likely to discover than t1 would.
令MAXPRIMES=4,则在n=3时没有错误,n=5时发生数组越界
(c) For printPrime(), find a test case such that the corresponding test path visits the edge that connects the beginning of the while statement
to the for statement without going through the body of the while loop.
t3(n=1)
(d) Enumerate the test requirements for node coverage, edge coverage,and prime path coverage for the path for printPrimes().
node coverage
TR={1,2,3,4,5,6,7,8,9,10,11,12,13}
edge coverage
TR={(1,2),(2,3),(2,11),(3,4),(4,5),(5,6),(5,9),(6,7),(6,8),(7,5),(8,5),(9,10),(9,2),(10,2),(11,12),(11,13),(12,11)}
prime path coverage
TR={
[1,2,3,4,5,6,7]
[1,2,3,4,5,6,8]
[1,2,3,5,9]
[1,2,3,5,9,10]
[1,2,11,12]
[1,2,11,13]
[2,3,4,5,6,7,2]
[2,3,4,5,6,8,2]
[2,3,4,5,9,10,2]
[2,3,4,5,9,2]
[3,4,5,9,10,2,3]
[3,4,5,9,2,3]
[3,4,5,9,2,11,12]
[3,4,5,9,2,11,13]
[3,4,5,9,10,2,11,12]
[3,4,5,9,10,2,11,13]
[5,6,7,5]
[5,6,8,5]
[6,7,5,6]
[6.8.5.6]
[6,7,5,9,2,11,12]
[6,7,5,9,2,11,13]
[6,7,5,9,10,2,11,12]
[6,7,5,9,10,2,11,13]
[6,8,5,9,2,11,12]
[6,8,5,9,2,11,13]
[6,8,5,9,10,2,11,12]
[6,8,5,9,10,2,11,13]
[7,5,6,7]
[8,5,6,8]
[9,2,3,4,5,9]
[9,10,2,3,4,5,9]
[10,2,3,4,5,9,10]
[11,12,11]
[12,11,12]
[12,11,13]
}
基于Junit 及Eclemma (jacoco )实现一个主路径覆盖的测试。
package Prime; public class Prime { public int curPrime; //Value currently considered for primeness public int numPrimes; // Number of primes found so far; public boolean isPrime; //Is curPrime prime? public int[] primes = new int[9999];// The list of primes. public void printPrimes( int n) { // Initialize 2 into the list of primes. primes[0] = 2; numPrimes = 1; curPrime = 2; while(numPrimes < n) { curPrime++; // next number to consider... isPrime = true; for(int i = 0; i < numPrimes; i++ ) { //for each previous prime. if(isDvisible(primes[i],curPrime)) { //Found a divisor, curPrime is not prime. isPrime = false; break; } } if(isPrime) { // save it! primes[numPrimes] = curPrime; numPrimes++; } }// End while // print all the primes out for(int i = 0; i < numPrimes; i++) { System.out.println("Prime: " + primes[i] ); } }// End printPrimes. private static boolean isDvisible(int prime, int curPrime) { if (curPrime % prime == 0) { return true; } else return false; } public String getstr() { // TODO Auto-generated method stub String str=""; for(int i = 0; i < numPrimes; i++) { str+="Prime: " + primes[i]+";"; } return str; } }
package Prime; import static org.junit.Assert.*; import java.io.ByteArrayOutputStream; import java.io.PrintStream; import org.*; import org.junit.After; import org.junit.Before; import org.junit.Ignore; import org.junit.Test; import org.junit.runner.RunWith; public class testPri { public Prime prime = new Prime(); @Test public void TestNormal(){ String str=new String("Prime: 2;Prime: 3;Prime: 5;Prime: 7;Prime: 11;"); prime.printPrimes(5); assertEquals(str,prime.getstr()); } }
测试结果