欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ4989
题意概括
一条马路的两边分别对应的序列A、B,长度为n,两序列为1到n的全排列。当Ai=Bj时,两边之间会连一条边。你可以选择序列A或序列B进行旋转(只能使队尾或队头位置上的数字变成队头或队尾上的数字)任意K(0<=K<n)步,如123,可以变成 231 或 312。求旋转后,最少的边的交叉数。
题解
两个都可以转,那么我们只需要分别转动两个并统计即可。
旋转一个,那么我们只需要统计逆序对就可以了。对于任意一个情况,逆序对可以nlogn求出,但是如何统计这n种情况呢。我们发现,从一种情况转到另一种情况,改变的仅是与动的哪一个数字有关的,那么只需要加加减减就可以转移了。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=100000+5;
int n,a[N],b[N],c[N],A[N],B[N];
LL tot,ans;
LL min(LL a,LL b){
return a<b?a:b;
}
int lowbit(int x){
return x&-x;
}
void add(int x,int d){
for (;x<=n;x+=lowbit(x))
c[x]+=d;
}
LL sum(int x){
int ans=0;
for (;x>0;x-=lowbit(x))
ans+=c[x];
return ans;
}
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]),A[i]=a[i];
for (int i=1;i<=n;i++)
scanf("%d",&b[i]),B[i]=b[i];
for (int i=1;i<=n;i++)
c[b[i]]=i;
for (int i=1;i<=n;i++)
a[i]=c[a[i]];
memset(c,0,sizeof c);
tot=0;
for (int i=n;i>=1;i--){
tot+=sum(a[i]-1);
add(a[i],1);
}
ans=tot;
for (int i=n;i>=1;i--){
tot=tot-(LL)(n-a[i])+(LL)(a[i]-1);
ans=min(ans,tot);
}
for (int i=1;i<=n;i++)
a[i]=B[i];
for (int i=1;i<=n;i++)
b[i]=A[i];
for (int i=1;i<=n;i++)
c[b[i]]=i;
for (int i=1;i<=n;i++)
a[i]=c[a[i]];
memset(c,0,sizeof c);
tot=0;
for (int i=n;i>=1;i--){
tot+=sum(a[i]-1);
add(a[i],1);
}
for (int i=n;i>=1;i--){
tot=tot-(LL)(n-a[i])+(LL)(a[i]-1);
ans=min(ans,tot);
}
printf("%lld",ans);
return 0;
}