拖拽系统 http://demo.zkea.net/admin/page/design/0880a4dfdc184ff99b88c88325716d1b转载于:https://www.cnblogs.com/renzhituteng/p/11386742.html
IIS 7.5 配置伪静态 长时间不弄伪静态了,刚花了1-2个小时研究弄了下一、 iis安装 URLRewrite下载地址:http://www.iis.net/download/URLRewrite二、web.config 添加<system.webServer> <handlers> <add name="html3" path="*" ver...
vs2019 秘钥 VisualStudio2019EnterpriseBF8Y8-GN2QH-T84XB-QVY3B-RC4DFVisualStudio2019ProfessionalNYWVH-HT4XC-R2WYW-9Y3CM-X4V3Y转载于:https://www.cnblogs.com/renzhituteng/p/11364734.html
基于MFCC的语音数据特征提取概述 1. 概述 语音是人类之间沟通交流的最直接也是最快捷方便的一种手段,而实现人类与计算机之间畅通无阻的语音交流,一直是人类追求的一个梦想。 伴随着移动智能设备的普及,各家移动设备的厂家也开始在自家的设备上集成了语音识别系统,像Apple Siri、Microsoft Cortana、Google Now等语音助手的出现,使得人们在使用移动设备的同时,也能够进行语音交流,极大的方...
自编码器 神经网络就是最简单的自动编码器,区别在于其输出和输入是相同的,然后训练器参数,得到每一层中的权重,自然地我们就得到了输入x的不同的表示(每一层代表一种)这些就是特征,自动编码器就是一种尽可能复现原数据的神经网络。 “自编码”是一种数据压缩算法,其中压缩和解压缩过程是有损的。自编码训练过程,不是无监督学习而是自监督学习。 自编码器(AutoEncoder,AE)是一种利...
深度学习中的激活函数 众所周知神经网络单元是由线性单元和非线性单元组成的,而非线性单元就是我们今天要介绍的--激活函数,不同的激活函数得出的结果也是不同的。他们也各有各的优缺点,虽然激活函数有自己的发展历史,不断的优化,但是如何在众多激活函数中做出选择依然要看我们所实现深度学习实验的效果。 这篇博客会分为上下两篇,上篇介绍一些常用的激活函数(Sigmoid、tanh、ReLU、LeakyReLU...
稀疏 机器学习的很多领域中存在很多稀疏矩阵,比如用来表示分类数据的独热编码、用于表示文档中词汇频率的计数编码、用于表示词汇中标准化的单词频率得分的TF-IDF编码。稀疏矩阵稀疏矩阵:在矩阵中,若数值中为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律。稠密矩阵:在矩阵中,若数值中为0的元素数目远远少于非0元素的数目。$$矩阵的稠密度=\frac{非零元素的总数}{矩...
电脑组装之硬件选择 了解电脑电脑主要配件:主板、CPU、显卡、显示器、电源、机箱、内存条、硬盘。CPU、显卡、内存条、硬盘是插在主板上的,电源用来给主板上的部件进行供电,CPU,主板,显卡,内存条、硬盘、电源这几个放在机箱中就构成了我们通常所说的主机。摩尔定律,硬件的性能每隔18~20个月就会提升一倍。主板主板性能指标:芯片组、供电项数目、做工、扩展能力(是否支持USB3.0或者USB3.1,是...
Keras保存模型并载入模型继续训练 我们以MNIST手写数字识别为例import numpy as npfrom keras.datasets import mnistfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.optimiz...
Batch Normalization 深度神经网络难训练一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更新。为了训练好模型,我们需要谨慎初始化网络权重,调整学习率等。原理分析为了解决这个问题,一个比较直接的想法就是对每层输入数据都进行标准化。Batch Normalization确实就...
Audio Bit Depth Super-Resolution with Neural Networks Audio Bit Depth Super-Resolution with Neural Networks作者:Thomas Liu、Taylor Lundy、William Qi摘要 Audio Bit Depth Super-Resolution是一个尚未通过深度学习的视角来研究的问题,目前使用的有效方法很少。在本文中,我们提出了一种基于WavaNet结构来...
matlab中的colormap matlab colormaps默认颜色图是parula,颜色图从左往右数值不断增大。颜色图名称色阶parulajethsvhotcoolspringsummerautumn...
经典深度学习模型发展 一、简介AlexNet:(2012)主要贡献扩展 LeNet 的深度,并应用一些 ReLU、Dropout 等技巧。AlexNet 有 5 个卷积层和 3 个最大池化层,它可分为上下两个完全相同的分支,这两个分支在第三个卷积层和全连接层上可以相互交换信息。它是开启了卷积神经网络做图像处理的先河。VGG-Net:2014年。该网络使用3×3卷积核的卷积层堆叠并交替最大池化层,有两个...
Python实现语音识别和语音合成 声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。案例:画出语音信号的波形和频率分布,(freq.wav数据地址)# -*- encoding:utf-8 -*-imp...
librosa语音信号处理 librosa是一个非常强大的python语音信号处理的第三方库,本文参考的是librosa的官方文档,本文主要总结了一些重要,对我来说非常常用的功能。学会librosa后再也不用用python去实现那些复杂的算法了,只需要一句语句就能轻松实现。先总结一下本文中常用的专业名词:sr:采样率、hop_length:帧移、overlapping:连续帧之间的重叠部分、n_fft:窗口...
python集合、元组、字典 主要内容:2、集合3、元组4、字典复习: 字符串和元组一样,只能读不能写。列表和字典可以嵌套任何东西,列表可以嵌套列表 L = list("hello") # L = ['h', 'e', 'l', 'l', 'o'] 集合、字典是无序的;列表、元组、字符串是有序的 集合、字典、列表是可以修改的;元组、字符串、数字是不能修改的 for 语句...
python网络线程 线程线程是一种多任务编程的方式,可以使用计算机多核资源。线程又被称为轻量级的进程线程特征 * 线程是计算机核心分配的最小单位 * 一个进程可以包含多个线程 * 线程也是一个运行过程,也要消耗计算机资源。多个线程共享其进程的资源和空间 * 线程也拥有自己特有的资源属性,比如指令集,TID等 * 线程无论创建还是删除还是运行资源消耗都小于进程 *...
json解析模块 json.loads(json)把json格式的字符串转为Python数据类型html_json = json.loads(res.text)json.dumps(python)把 python 类型 转为 json 类型import json# json.dumps()之前item = {'name':'QQ','app_id':1}print...
TensorFlow中实现RNN,彻底弄懂time_step 这篇博客不是一篇讲解原理的博客,这篇博客主要讲解tnesorlfow的RNN代码结构,通过代码来学习RNN,以及讲解time_steps,如果这篇博客没有让你明白time_steps,欢迎博客下面评论交流。 我曾翻阅各大网站,各大博客,他们的对RNN中time_steps的讲解,都没有一个让人醍醐灌顶的答案,甚至让人越看模糊。有的博主在博客中讲的看似他懂了,一问他自己他答不上来...
python做傅里叶变换 傅里叶变换(fft) 法国科学家傅里叶提出,任何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑正弦曲线叠加之和。傅里叶变换即是把一条不规则的曲线拆解成一组光滑正弦曲线的过程。 傅里叶变换的目的是将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的变换,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。这就可以...