给定一个2n个整数的数组,你的任务是将这些整数分组为n对整数,比如说(a 1,b 1),(a 2,b 2),...,(a n,b n)对于从1到n的所有i尽可能大的min(a i,b i)之和。
例1:
输入: [1,4,3,2] 输出: 4 说明: n为2,对的最大总和为4 = min(1,2)+ min(3,4)。
注意
- n是正整数,其范围为[1,10000]。
- 数组中的所有整数都在[-10000,10000]的范围内。
解法1: 先通过Arrays.sort()将数组排序,然后直接通过while循环将偶数下标的数组元素相加 public int arrayParam(int [] nums) { int i=0,sum=0; Arrays.sort(nums); while (i<nums.length) { sum+=nums[i]; i=i+2; } return sum; } 解法2: 采用了桶排序。新建一个容量为20001的数组作为目标桶(目标数组元素范围-10000到10000),将nums数组元素+10000作为放入目标桶的索引,同时目标桶索引所对应的值+1。nums数组放入目标桶后,nums数组在目标桶数组中完成排序。同时循环目标桶数组元素,目标桶数组值大于1时,即为nums数组元素+10000放入目标桶的索引位置对应的值>0时,通过设置布尔值,对在此条件下遇到的奇数次元素进行求和(需要减去原来加的10000)。 public static int arrayParam(int [] nums) { int[] temp = new int[20001]; for (int i=0; i<nums.length; i++) { temp[nums[i]+10000]++; } int sum = 0; boolean odd = true; for (int i=0; i<temp.length; i++) { while (temp[i] > 0) { if (odd) { sum += i-10000; } odd = !odd; temp[i]--; } } return sum; }