bzoj 3559: [Ctsc2014]图的分割【最小生成树+并查集】

读题两小时系列……
在读懂题意之后,发现M(c)就是c这块最大权割边也就是的最小生成树的最大权边的权值,所以整个问题都可以在MST的过程中解决(M和c都是跟着并查集变的)
不过不是真的最小生成树,是合并了所有a[i].w<=min(b[zhao(f[a[i].u])]+z[c[zhao(f[a[i].u])]],b[zhao(f[a[i].v])]+z[c[zhao(f[a[i].v])]])的边的若干联通块,根据定义那样的边不能连在两块之间,一定需要放在一个块里,然后每次合并的时候更新M和c即可

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int N=1000005;
int n,m,z[N],b[N],c[N],s[N],ans,f[N];
vector<int>v[N];
struct qwe
{
    int u,v,w;
}a[N];
bool cmp(const qwe &a,const qwe &b)
{
    return a.w<b.w;
}
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
int zhao(int x)
{
    return f[x]==x?x:f[x]=zhao(f[x]);
}
int main()
{
    n=read(),m=read();
    for(int i=1;i<=n;i++)
        z[i]=read(),f[i]=i,c[i]=1;
    for(int i=1;i<=m;i++)
        a[i].u=read(),a[i].v=read(),a[i].w=read();
    sort(a+1,a+1+m,cmp);
    for(int i=1;i<=m;i++)
        if(a[i].w<=min(b[zhao(f[a[i].u])]+z[c[zhao(f[a[i].u])]],b[zhao(f[a[i].v])]+z[c[zhao(f[a[i].v])]]))
        {
            int fu=zhao(a[i].u),fv=zhao(a[i].v);
            if(fu!=fv)
            {
                f[fu]=fv;
                c[fv]+=c[fu];
                b[fv]=a[i].w;
            }
        }
    for(int i=1;i<=n;i++)
        v[zhao(f[i])].push_back(i);
    for(int i=1;i<=n;i++)
        if(v[i].size())
            ans++;
    printf("%d\n",ans);
    for(int i=1;i<=n;i++)
        if(v[i].size())
        {
            printf("%d ",v[i].size());
            for(int j=0;j<v[i].size();j++)
                printf("%d ",v[i][j]);
            puts("");
        }
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/10803480.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值