题意
有一个n个点m条边的无向图,边都有权值,每个点上有p[i]个人。现在又要新加入k条边,要求给这k条边赋上一个权值,然后在原图中选择任意一个最小生成树,求当所有人都要走到节点1时,k条边中每条边的权值乘上经过该边的人数的最大值。
n<=100000,m<=300000,k<=20
分析
一开始的想法是,2^k枚举每条边选或不选,然后强制选那些被选定的边。对于原来最小生成树上的边,若连接两个不同的集合,就连上去,否则就对路径上选定的边的权值进行更新。最后树形dp一遍就可以得出答案。
复杂度是 O(nk2k) O ( n k 2 k ) 。
考虑优化:
我们可以先强行选这k条边,然后做一遍最小生成树,这样最小生成树中的边无论如何都是比如会选的。这样我们就把图缩成了一个只有k+1个点k条边的图。
这时再用原图中的边做一次最小生成树。
然后就用上面的方法来做即可。
复杂度 O(mlog