算法
Dijkstra
要求次短路
那么在不考虑重复走一条边的情况下
肯定是把最短路中的一段改成另一段
至少要换另一条边到路径里
所以可以枚举所有不属于最短路的每条边(a,b)
那么dis(1,a)+(a,b)+ dis(b,n)就是一种可能的答案(记为S)
显然如果另一条不属于S的边更新S后会使S更长,就不可能为次短路了
那么只要对起点1和终点n分别跑Dijkstra就可以求出每个dis(1,a)和dis(b,n)
至于判断一条边是否在最短路上也很容易:
显然,如果dis(1,a)+(a,b)=dis(1,b),那么边(a,b)就在最短路径上
然后考虑重复走一条边情况(显然也只要考虑重复走一条边的情况)
也很简单,用贪心的思想
找到最短路径上最短的边(a,b),如果重复走一条边的情况为次短路,那么肯定是dis(1,n)+(a,b)*2 (走过去又走回来,要乘2)
如果(c,d)不是最短的边,那么dis(1,n)+(c,d)*2肯定大于dis(1,n)+(a,b)*2,就不可能是次短路
然后就可以了,实现时要注意一下细节
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> #include<cstring> #include<vector> #include<queue> using namespace std; inline int read() { int res=0; char ch=getchar(); while(ch>'9'||ch<'0') ch=getchar(); while(ch>='0'&&ch<='9') { res=res*10+ch-'0'; ch=getchar(); } return res; } struct node//存Dijkstra的优先队列中的数据 { int u,v;//v为点的编号,u表示从起点到v的距离 bool operator < (const node &b) const{ return u>b.u; } }; priority_queue <node> q;//为Dijkstra开的优先队列 struct edge { int from,to,z; }e[1000007]; int fir[50007],cnt;//链式前向星存图 inline void add(int a,int b,int c) { e[++cnt].from=fir[a]; fir[a]=cnt; e[cnt].to=b; e[cnt].z=c; }//加边 int n,m,ans=199999999; int dis[50007][2]; //dis[][0]为起点到各个点的距离,dis[][1]为终点到各个点的距离 inline void dijk(int sta,int k) //sta为开始点,k为dis的第二维 { dis[sta][k]=0; node p; p.u=0; p.v=sta; q.push(p); while(q.empty()==0) { int u=q.top().u,v=q.top().v; q.pop(); if(u!=dis[v][k]) continue; //优化 for(int i=fir[v];i;i=e[i].from) { int to=e[i].to; if(dis[to][k]>dis[v][k]+e[i].z) { dis[to][k]=dis[v][k]+e[i].z; p.u=dis[to][k]; p.v=to; q.push(p); } } } }//Dijkstra的模板 struct data { int x,y,z; }d[1000007];//存读入的数据 int main() { memset(dis,0x7f,sizeof(dis)); int a,b,c,mi=199999999;//mi表示最短路径上最短的边长 cin>>n>>m; for(int i=1;i<=m;i++) { a=read(); b=read(); c=read(); d[i].x=a; d[i].y=b; d[i].z=c; add(a,b,c); add(b,a,c); }//读入 dijk(1,0); dijk(n,1);//跑最短路 int mx=dis[n][0]; for(int i=1;i<=m;i++) //考虑不重复走一条边的情况 { int x=d[i].x,y=d[i].y; if(dis[x][0]+dis[y][1]>dis[y][0]+dis[x][1]) swap(x,y); //重要的细节,1到x的路径不能和y到n的路径重复 int s=dis[x][0]+dis[y][1]; if(s+d[i].z==mx) continue;//判断边(x,y)是否在最短路径上,如果在就不能选 ans=min(ans,s+d[i].z);//否则就尝试更新答案 } for(int i=1;i<=m;i++) //考虑重复走一条边的情况,显然只要考虑在最短路径上的边 { int x=d[i].x,y=d[i].y; if(dis[x][0]+dis[y][1]>dis[y][0]+dis[x][1]) swap(x,y); //同样,1到x的路径不能和y到n的路径重复 if(dis[x][0]+dis[y][1]+d[i].z!=mx) continue;//如果边(x,y)不在最短路径上就不能考虑 mi=min(mi,d[i].z);//尝试更新mi } ans=min(ans,mx+mi*2);//答案取较小值 cout<<ans; return 0; }