hadoop Partiton中的字符串Hash函数改进

 

最近的MapReduce端的Partition根据map生成的Key来进行哈希,导致哈希出来的Reduce端处理任务数量非常不均匀,有些Reduce端处理的数据量非常小(几分钟就执行完成,而最后的part-结果显示其输出文件为0,没有处理任何任务),而有些Reduce端需要执行大量的任务(大概1个多小时)

 

根据下面的这篇大牛所写的文章,字符串hash算法也有很多种:

https://www.byvoid.com/en/blog/string-hash-compare

 

这些算法使用位运算使得每个字符都对最后的结果产生影响,作者对其展开了一系列评测,最终BKDR函数无论是在实际效果还是编码实现中,效果都是非常突出的,因此本重构也采用这种算法。

 

文中给出这种算法的C语言实现:

 

// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;

    while (*str)
    {
        hash = hash * seed + (*str++);
    }

    return (hash & 0x7FFFFFFF);
}

 

 

下面需要做的就是将其转换为Java实现,Java中使用long类型作为C语言中无符号整数的替代(避免int*计算的溢出),后面强制转换为int,去掉高位,并纠正“+/-”号

 

public static int bkdrHash(String hashString) {
        long seed = 131L;
        long hash = 0L;
        for (int i = 0; i < hashString.length(); i++) {
            char element = hashString.charAt(i);
            hash = hash * seed + element;
        }
        int hashInt = (int) hash;
        return hashInt & 0x7FFFFFFF;
    }

 

 

算法修改完成后,我们需要根据实际的结果来判断是否已经hash均匀。

 

为了确保实际情况中的数据能够有效地哈希均匀,我们直接修改Reduce端,让其直接在reduce函数中仅将key值输出,并将所有输出合并到一个文件以便进行分析。(未设置OutputFormat,直接输出Key文本作为一行)

collector.collect(new Text(iReportKey.getPartitionKey()), new Text(""))

 

 

进行均匀的简单分析程序如下:

 

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(is));
        String line;
        int totalCount = 0;
        while ((line = bufferedReader.readLine()) != null) {
            int index = Util.hashCode(line, numberPartition);
            result[index]++;
            totalCount++;
        }
        bufferedReader.close();

        System.out.println("---------------------");
        System.out.println("Total Count: " + totalCount);
        for (int i = 0; i < numberPartition; i++) {
            System.out.println(
                    String.format("partition=%s, count=%s, percentage=%s%%", i, result[i],
                            (double) result[i] * 100d / (double) totalCount));
        }
        System.out.println("---------------------");

 

 

默认设置10个Reduce,分别对生成的Key文件的结果进行处理:

当Map生成的Key数据总量为4390398:

 

 

Total Count: 4390398
partition=0, count=632297, percentage=14.401815051847235%
partition=1, count=410196, percentage=9.343025393142034%
partition=2, count=406882, percentage=9.267542487036483%
partition=3, count=531126, percentage=12.097445379667173%
partition=4, count=569099, percentage=12.962355576874808%
partition=5, count=324720, percentage=7.396140395472119%
partition=6, count=394503, percentage=8.985586272588499%
partition=7, count=343889, percentage=7.832752292616751%
partition=8, count=384954, percentage=8.76808890674604%
partition=9, count=392732, percentage=8.945248244008857%

 

 

 

数据量提高一个等级,当Map生成的Key数据总量为40976446时:

 

 

Total Count: 40976446
partition=0, count=4905825, percentage=11.972304772356294%
partition=1, count=5172735, percentage=12.623678978894363%
partition=2, count=3850931, percentage=9.397913620912853%
partition=3, count=3595419, percentage=8.774355394316043%
partition=4, count=3432017, percentage=8.375584842082205%
partition=5, count=3625976, percentage=8.848927503375965%
partition=6, count=3829224, percentage=9.344939285364084%
partition=7, count=3844329, percentage=9.381801925916172%
partition=8, count=4410943, percentage=10.76458168187646%
partition=9, count=4309047, percentage=10.515911994905561%

 

 

可以看出数据量比较符合预期,最终的实际Reduce(设置为5)效果也比较好,Reduce的执行时间变得非常均匀了:



 

但是经过分析后,直接将long值截取一下并不是一个好的方案,有些暴力:

int hashInt = (int) hash;

 

考虑将算法中的每一步局部变量都设置成int,这样就不会有截取的麻烦,将&操作放到循环内:

public static int bkdrHash(String hashString) {
        int seed = 131;
        int hash = 0;
        for (int i = 0; i < hashString.length(); i++) {
            char element = hashString.charAt(i);
            hash = (hash * seed + element) & 0x7FFFFFFF;
        }
        return hash;
    }

 

但是我们知道,如果int值执行乘法操作时,是有可能溢出的,表现为结果直接返回一个负数。由于我们每次循环都需要*seed,必须保证hash出来的值*seed要小于Integer.MAX_VALUE。

 

Integer.MAX_VALUE=2147483647
(Integer.MAX_VALUE  & 0x1FFFFFFF) * 131=1610612605

 

1610612605会加一个char值,不可能超出最大值,于是选择0x1FFFFFFF替代0x7FFFFFFF。

于是,我们最终的hash方法更改为下面的版本:

public static int bkdrHash(String hashString) {
        int seed = 131;
        int hash = 0;
        for (int i = 0; i < hashString.length(); i++) {
            char element = hashString.charAt(i);
            hash = (hash * seed + element) & 0x1FFFFFFF;
        }
        return hash;
    }

 

经过hash均匀测试,也同样满足要求。

转载于:https://www.cnblogs.com/mmaa/p/5789914.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值