多智能体强化学习入门(八)——图卷积强化学习DGN GRAPH CONVOLUTIONAL REINFORCEMENT LEARNING文章在https://zhuanlan.zhihu.com/p/143816617
多智能体强化学习入门(七)——AC for CDec-POMDP 大规模规划学习算法 Thien, Nguyen & Kumar, Akshat & Lau, Hoong. (2017). Policy Gradient With Value Function Approximation For Collective Multiagent Planning.内容详见:https://zhuanlan.zhihu.com/p/66571753
多智能体强化学习入门(一)——基础知识与博弈 本次开一个专栏,用来分享关于多智能体强化学习方面的入门内容。强化学习在单体稳定环境中取得了非常好的效果,DeepMind,OpenAI目前都在把眼光投向了多智能体强化学习,尤其是分布式的算法。本节内容分享在https://zhuanlan.zhihu.com/p/53474965。...
【强化学习】确定性策略强化学习-DPG&DDPG算法推导及分析 一、DGP推导本篇介绍确定性策略梯度算法,该算法主要用于off-policy(on-policy也能用)。在DQN等值函数估计算法中,最终策略的形式是需要对动作状态值函数取极大a=argmaxa′Q(s,a′)a={\rm argmax}_{a'}Q(s,a')a=argmaxa′Q(s,a′),这种方法只能用在有限的离散动作空间中,无法应用在较大离散空间或...
【强化学习】中Q-learning,DQN等off-policy算法不需要重要性采样的原因 由于Q-learning采用的是off-policy,如下图所示但是为什么不需要重要性采样。其实从上图算法中可以看到,动作状态值函数是采用1-step更新的,每一步更新的动作状态值函数的R都是执行本次A得到的,而我们更新的动作状态值函数就是本次执行的动作A的Q(S,A)Q(S,A)Q(S,A)。就算A不是通过greedygreedygreedy策略选择的(是通过ϵ−greedy\epsilon...
【强化学习】值函数强化学习-DQN、DDQN和Dueling DQN算法公式推导分析 一、值函数估计方法引入在值函数估计方法中,我们希望拟合一个价值模型用来估计每个状态动作对的累积回报。其代价函数可以写为L=12∑a∑s(Q(s,a)−Q(s,a;θ))2L=\frac{1}{2}\sum_{a}\sum_{s}(Q(s,a)-Q(s,a;\theta))^2L=21a∑s∑(Q(s,a)−Q(s,a;θ))2其中Q(s,a)Q(s,a)Q(s,a)为真实的累积回报...
【强化学习】随机策略梯度算法(stochastic-policy-gradient) 策略搜索方法相对于值函数法有如下优缺点优点:直接策略搜索方法是对策略π\piπ进行参数化表示,与值函数方中对值函数进行参数化表示相比,策略参数化更简单,有更好的收敛性。利用值函数方法求解最优策略时,策略改进需要求解argmaxaQθ(s,a)argmax_a Q_\theta(s,a)argmaxaQθ(s,a),当要解决的问题动作空间很大或者动作为连续集时,该式无法有效求解。直接策...
共轭梯度法详细推导分析 共轭梯度法是一种经典的优化算法。算法求解速度较快,虽然比梯度下降法复杂,但是比二阶方法简单。一、引入1. 优化模型建立假定待优化的问题如下所示:minxf(x)=12xTAx−bTx\min_{x} f(x)=\frac{1}{2}x^TAx - b^Txxminf(x)=21xTAx−bTx其中xxx为待优化变量,AAA为半正定矩阵(在线性代数中,正定矩阵为对称矩阵),bbb...
XGBoost论文原理公式推导 目标函数Obj(Θ)=L(Θ)+Ω(Θ)Obj(\Theta) = L(\Theta) + \Omega(\Theta)Obj(Θ)=L(Θ)+Ω(Θ)其中L(Θ)L(\Theta)L(Θ)为损失(误差)函数,Ω(Θ)\Omega(\Theta)Ω(Θ)为正则化项。模型Obj(Θ)=∑i=0nl(yi,y^i)+∑k=1KΩ(fk)y^it=∑k=1tfk(xi)=y^it−1+ft(...
算法面试中的逻辑题 1. 射影定理在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。BD2=AD∗DCAB2=AD∗ACBC2=CD∗ACBD^2=AD*DC\\AB^2=AD*AC\\BC^2=CD*ACBD2=AD∗DCAB2=AD∗ACBC2=CD∗AC2. 硬币生成等价事件取大于事件数的最小二进制数。0表示反,1表示正。然后...
算法题4 1. 课程表 II现在你总共有 n 门课需要选,记为 0 到 n-1。在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。输入: 4, [[1,0],[2...
算法题3 1. 三角形最小路径和给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。例如,给定三角形:[[2],[3,4],[6,5,7],[4,1,8,3]]自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。分析:自下而上动态规划,建立一个大小为n的help矩阵,用来保存走到当前层各个位置的最短路径,然后一层层向上累积。int...
算法题2 1. 变态跳台阶一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。分析:f(n)=f(1)+f(2)+...+f(n−1)+1f(n)=f(1)+f(2)+...+f(n-1)+1f(n)=f(1)+f(2)+...+f(n−1)+12. 矩形覆盖我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形...
队列与栈面试题C++ 概念1.图的深度优先遍历(DFS) 可以用栈实现,从根结点开始沿左孩子到最深的节点压入栈中,然后依次弹出,若栈顶节点还有没有访问的孩子,则没访问过得孩子入栈直到最深的节点,然后再弹出。元素入栈顺序则为深度优先遍历顺序。 2.图的宽度优先遍历(BFS) 可以用队列实现,将根结点放入队列,每弹出一个节点,就将该节点的孩子全部放入队列,放入队列的顺序为宽度优先遍历顺序。示例一实现一...