子集生成问题

/*#include<cstdio>
#include<algorithm>
using namespace std;
void print_subset(int n,int* A,int cur){
for(int i=0;i<cur;i++)printf("%d ",A[i]);
printf("\n");
int s=cur?A[cur-1]+1:0;
for(int i=s;i<n;i++){
A[cur]=i;
print_subset(n,A,cur+1);
}
}
int main(){
int n,A[1000];
scanf("%d",&n);
print_subset(n,A,0)    ;
return 0;
} */
#include<iostream> 
#include<stdio.h> 
#include<string.h>
using namespace std; 
int n; 
int k1[10];//存放具体数据 
int pos[10];//存放每次查找下一个元素的在集合k1中元素的具体位置 

void add_cl (int cur)//从一定程度上,我们可以这么理解cur参数:即cur是我们进行图的遍历的层数 
{ 
if(cur == 3) 
{ 
for (int i=0;i<cur; i++) 
{ 
cout<<k1[pos[i]]; 
} 
cout<<endl; 
} 


int dingwei = cur ? pos[cur-1] + 1 : 0; 


//这句对于大多数人来说比较晦涩难懂,下面注释部分为这句的较为通俗的写法 
//上面一句就是这个算法的核心------->> 我们的集合pos其实存放的数据是满足我们设置的一定条件的集合k1中的元素的具体位置 
//我们通过一些条件控制到达了避过一部分已经找到的子集目的,有效的过滤了不满足条件的集合,增加了我们进行了递归操作的效率 

/* 
if (cur == 0) 
{ 
dingwei = 0; 
} 
else 
{ 
dingwei = pos[cur-1] + 1; 
} 

*/ 
for (int i=dingwei;i<n;i++) 
{ 
pos[cur] = i; 
add_cl(cur+1); 
//这个算法的一个好处:我们不用特别的判断递归条件,因为我们进行的数组的遍历,我们通过循环无形中进行了控制, 
//也就是说在此时这个for循环的工作空间内,进行了添加数据的操作,如果不满足这个for循环的条件,我们就可以这么认为:无法添加新的元素,自然也就不会有递归了 
} 
} 

int main () 
{ 
while (cin>>n) 
{ 
memset(k1,0,sizeof(k1)); 
memset(pos,0,sizeof(pos)); 
for (int i=0;i<n;i++) 
{ 
cin>>k1[i]; 
} 
add_cl (0); 
} 
return 0; 
}

 

 

第一种是直接是从1到N的数的子集不需要存储位置,第二种是随便的几个数,不是连续自然数,所以需要记录位置。

 

 

参考:http://blog.csdn.net/ajfdlkasjgdlkas/article/details/53152721

 

转载于:https://www.cnblogs.com/ls-pankong/p/8510135.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值