P1908 逆序对

P1908 逆序对

题意:

给你一个长度为 $ n $ 的数组,求其中的逆序对数量。

解法:

数据范围很大 $ (n \leq 5 \times 10^5) $ ,所以考虑离散化+树状数组。

CODE:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>

using namespace std;

#define LL long long
const int N = 5e5 + 100;

struct Node {
    int val,pos;
} a[N];
int tree[N],tag[N],n;
LL ans;

inline int lowbit(int x) {
    return x & (-x);
}
inline void add(int x) {
    for(; x <= n ; x += lowbit(x))
        tree[x]++;
    return;
}
inline int query(int x) {
    int ans = 0;
    for(; x ; x -= lowbit(x))
        ans += tree[x];
    return ans;
}
inline bool cmp(Node a,Node b) {
    if(a.val == b.val) 
        return a.pos < b.pos;
    return a.val < b.val;
}
inline int read() {
    int x = 0,f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9') {if(ch == '-') f=-1; ch=getchar();}
    while(ch >= '0' && ch <= '9') {x = (x<<1) + (x<<3) + (ch^48);ch = getchar();}
    return x * f;
}

int main() {
    n = read();
    for(int i = 1 ; i <= n ; i++) {
        a[i].val = read();
        a[i].pos = i;
    }
    sort(a + 1,a + n + 1,cmp);
    for(int i = 1 ; i <= n ; i++) tag[a[i].pos] = i;
    for(int i = n ; i >= 1 ; i--) {
        ans += query(tag[i]);
        add(tag[i]);
    }
    printf("%lld \n",ans);
    //system("pause");
    return 0;
}

转载于:https://www.cnblogs.com/Repulser/p/11469774.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值