Description
靠各种货币之间的的汇率差不断买入,使自己的财富大于现有财 富的行为叫做套汇。当然,能不能成功,那可不一定。现在,某城市有M家银行,该城市一共流通N种货币,所以这M家银行一共提供N种货币的兑换业务。但是每 家银行只提供两种货币间的兑换业务,且这M家银行之间,没有任何两家银行会提供相同的货币种类间的兑换业务。每次到各个银行兑换的时候,都需要一定的手续 费。
比方说,我现在有100美金,我打算将他换成人民币,而他们之间的比例是1:6,手续费按用来兑换的币种收取,比方说是0.5美金,那么,最后我得到的人民币有(100-0.5)*6=597元。
现在,某人拥有币种为S的钱,他想套汇,当然,成功的条件是,最后在他手里的币种仍然是S,且钱数增加了。他必须保证在整个过程中,手里持有的钱数始终是正数。
那么他到底能否套汇成功呢?
Input
测试包含多组测试数据。
每组测试数据的第一行包含四个数,N-货币的总数,M-银行的总数,S-某人现持有的货币的种类,V-某人持有S类货币的数量。(货币的种类不超过100 种,不同货币的种类用数字区分,且表示货币的数字的大小将从1开始且不会超过N即1<=S<=N<=100)
在接下来的M行里,将描述每个银行的兑换业务情况。每行将包含6个数。首先是代表两种货币的数字A和B,然后分别是A兑换成B的汇率R(AB),手续费 C(AB),B兑换成A的汇率R(BA),手续费C(BA)。(0.01<=R(AB),R(BA)<=100;0& lt;=C(AB),C(BA)<=100)
Output
如果套汇成功,则输出“YES”,否则输出“NO”。
Sample Input
Sample Output
#include <stdio.h> #include <string.h> #include <queue> using namespace std; #define N 101 #define M 5000 int n,m,start; int g[N][N]; int inq[N]; double sum; double money[N]; double r[N][N],c[N][N]; void spfa() { queue<int> q; int cur,next; bool success=false; memset(inq,0,sizeof(inq)); q.push(start); inq[start]=1; while(!q.empty() && !success) { cur=q.front(),q.pop(); inq[cur]=0; if(cur==start && money[cur]>sum) success=true; for(next=1;next<=n && !success;next++) { if(g[cur][next]==0) continue; if(inq[next]==0 && money[cur]>c[cur][next]) { money[next]=(money[cur]-c[cur][next])*r[cur][next]; q.push(next); inq[next]=1; } if(inq[next]==1 && money[next]<(money[cur]-c[cur][next])*r[cur][next]) { money[next]=(money[cur]-c[cur][next])*r[cur][next]; } } } if(success) puts("YES"); else puts("NO"); } int main() { int i,j,k; while(~scanf("%d%d%d",&n,&m,&start)) { memset(g,0,sizeof(g)); for(i=1;i<=n;i++) money[i]=0; scanf("%lf",&sum); money[start]=sum; for(k=0;k<m;k++) { scanf("%d%d",&i,&j); scanf("%lf%lf%lf%lf",&r[i][j],&c[i][j],&r[j][i],&c[j][i]); g[i][j]=g[j][i]=1; } spfa(); } return 0; }