1424:【例题3】喷水装置时间限制: 1000 ms 内存限制: 65536 KB 提交数: 1122 通过数: 66 【题目描述】长 LL 米,宽 WW 米的草坪里装有 nn 个浇灌喷头。每个喷头都装在草坪中心线上(离两边各 W2W2 米)。我们知道每个喷头的位置(离草坪中心线左端的距离),以及它能覆盖到的浇灌范围。 请问:如果要同时浇灌整块草坪,最少需要打开多少个喷头? 【输入】输入包含若干组测试数据。 第一行一个整数 TT 表示数据组数; 每组数据的第一行是整数 nn、LL 和 WW; 接下来的 nn 行,每行包含两个整数,给出一个喷头的位置和浇灌半径(上面的示意图是样例输入第一组数据所描述的情况)。 【输出】对每组测试数据输出一个数字,表示要浇灌整块草坪所需喷头数目的最小值。如果所有喷头都打开也不能浇灌整块草坪,则输出 −1−1 。 【输入样例】3 8 20 2 5 3 4 1 1 2 7 2 10 2 13 3 16 2 19 4 3 10 1 3 5 9 3 6 1 3 10 1 5 3 1 1 9 1 【输出样例】6 2 -1 【提示】数据范围: 对于 100% 的数据,n≤15000。 |
贪心;
结构体存每个喷头的前后到达位置;
以前端位置排序;
一个个扫描可以到达之前的后端,并且自己可以到达最远的后端;
分析不成立的情况;
#include<iostream> #include<cstring> #include<cmath> #include<cstdio> #include<algorithm> using namespace std; int n,cnt,L,h,x,r; struct SEG{ double x,y; }a[20005]; bool cmp(const SEG &x,const SEG &y){ return x.x<y.x; } void Read(){ cin>>n>>L>>h; cnt=0; for(int i=1;i<=n;i++){ cin>>x>>r; if(r<=h/2) continue; cnt++; a[cnt].x=x-sqrt(r*r-h*h/4.0); a[cnt].y=x+sqrt(r*r-h*h/4.0); } } void solve(){ double t=0; int ans=0,bj=1,i=1; while(t<L){ //顺序扫描 ans++; double s=t; for(;a[i].x<=s&&i<=cnt;i++)//依次找到覆盖l的最大右端 if(t<a[i].y) t=a[i].y; if(t==s&&s<L){ cout<<-1<<endl; bj=0; break; } //无解判断 } if(bj) cout<<ans<<endl; } int main(){ int T; cin>>T; while(T--){ Read(); sort(a+1,a+1+cnt,cmp); solve(); } return 0; }