题意:
1.互通的城市必须算一个州内
2.存在一条路径可以算一个州内
1. 想到强连通缩点
2.二分匹配
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#include<vector>
const int INF = 1<<31-1;
int min(int a,int b)
{
return a>b?b:a;
}
int max(int a, int b){
return a>b?a:b;
}
#define N 256004
//N为最大点数
#define M 256004
//M为最大边数
int n, m;//n m 为点数和边数
struct Edge{
int from, to, nex;
bool sign;//是否为桥
}edge[M<<1];
int head[N], edgenum;
void add(int u, int v){//边的起点和终点
Edge E={u, v, head[u], false};
edge[edgenum] = E;
head[u] = edgenum++;
}
int DFN[N], Low[N], Stack[N], top, Time; //Low[u]是点集{u点及以u点为根的子树} 中(所有反向弧)能指向的(离根最近的祖先v) 的DFN[v]值(即v点时间戳)
int taj;//连通分支标号,从1开始
int Belong[N];//Belong[i] 表示i点属于的连通分支
bool Instack[N];
vector<int> bcc[N]; //标号从1开始
void tarjan(int u ,int fa)
{
int i;
DFN[u] = Low[u] = ++ Time ;
Stack[top ++ ] = u ;
Instack[u] = 1 ;
for ( i = head[u] ; ~i ; i = edge[i].nex )
{
int v = edge[i].to;
if(DFN[v] == -1)
{
tarjan(v , u);
Low[u] = min(Low[u] ,Low[v]) ;
if(DFN[u] < Low[v])
{
edge[i].sign = 1;//为割桥
}
}
else if(Instack[v])
{
Low[u] = min(Low[u] ,DFN[v]) ;
}
}
if(Low[u] == DFN[u])
{
int now;
taj ++ ;
bcc[taj].clear();
do{
now = Stack[-- top] ;
Instack[now] = 0 ;
Belong [now] = taj ;
bcc[taj].push_back(now);
}while(now != u) ;
}
}
void tarjan_init(int all){
memset(DFN, -1, sizeof(DFN));
memset(Low, -1, sizeof(Low));
memset(Instack, 0, sizeof(Instack));
memset(Stack, 0, sizeof(Stack));
top = Time = taj = 0;
for(int i=1;i<=all;i++)
if(DFN[i]==-1 )
tarjan(i, i); //注意开始点标!!!
}
vector<int>G[N];
int du[N];
void suodian()
{
int i;
memset(du, 0, sizeof(du));
for( i = 1; i <= taj; i++)
G[i].clear();
for(i = 0; i < edgenum; i++)
{
int u = Belong[edge[i].from], v = Belong[edge[i].to];
if(u!=v)
{
G[u].push_back(v), du[v]++;
}
}
}
int useif[N]; //记录y中节点是否使用
int link[N]; //记录当前与y节点相连的x的节点
int can(int t)
{
int i;
for(i=0;i<G[t].size();i++)
{
int v=G[t][i];
if(useif[v]==0)
{
useif[v]=1;
if(link[v]==-1 || can(link[v]))
{
link[v]=t;
return 1;
}
}
}
return 0;
}
int MaxMatch()
{
int i,num;
num=0;
memset(link,-1,sizeof(link));
for(i=1;i<=taj;i++)
{
memset(useif,0,sizeof(useif));
if(can(i)) num++;
}
return num;
}
void init(){
memset(head, -1, sizeof(head));
edgenum=0;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int i,j;
init();
int a,b;
for( i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
}
tarjan_init(n);
suodian();
if(taj==1)
printf("1\n");
else
{
int ans=MaxMatch();
printf("%d\n",taj-ans);
}
}
return 0;
}