首先附上原始数据:data =
1.0e+003 *
0.0144 0.0220 0.4900
0.0075 0.0298 1.3160
0.0058 0.0408 0.6700
0.0062 0.0558 1.1960
0.0055 0.0149 0.2930
0.0420 0.0379 0.0570
0.0104 0.0320 1.9470
0.0551 0.0629 0.1290
0.0167 0.0231 0.3790
0.0307 0.0236 0.2630
0.0570 0.0464 0.3570
0.0444 0.0300 0.1890
0.0580 0.0431 0.2190
0.0133 0.0410 0.7940
0.0024 0.0200 0.9430
0.0686 0.0427 0.1720
0.0028 0.0263 0.3400
0.0471 0.0343 0.1890
0.0652 0.0246 0.1050
0.0510 0.0368 0.1940
0.0185 0.0112 0.0730
0.0224 0.0310 0.7260
0.0037 0.0217 0.3060
0.0224 0.0124 0.1440
0.0345 0.0503 0.3620
0.0535 0.0812 0.3560
0.0263 0.0216 0.2620
0.0101 0.0668 0.8360
0.0069 0.0521 1.1300
0.0286 0.0143 0.0700
0.0306 0.0340 0.3290
0.0204 0.0394 0.1790
0.0301 0.0215 0.2200
0.0247 0.0379 0.2240
0.0382 0.0330 0.0600
0.0054 0.0430 1.3800
0.0288 0.0049 1.4280
0.0487 0.0351 0.0960
0.0153 0.0435 0.3950
0.0011 0.0068 2.5770
0.0213 0.0567 0.4400
我做的怀特异方差检验:
Y=log(data(:,1))
X1=log(data(:,2));
X2=log(data(:,3));
regstats(Y,[X1,X2]) %states选择yhat standres r
scatter(yhat,standres.^2)
u=r.^2;
regstats(u,[X1,X2],'quadratic') %states选择rsquare beta
n=size(X1,1)
chi2=n*rsquare
P=2*(1-chi2cdf(chi2,5))
结果和书上有很大的分歧,求大侠赐教,到底是哪做错了?
广义最小二乘法处理异方差的如下方法对么?
y=y./abs(r)
x0=1./abs(r)
x1=x1./abs(r)
x2=x2./abs(r)
[b,bint,r,rint,stats]=regress(y,[x0,x1,x2])
博主分享了一次使用MATLAB进行怀特异方差检验的实际操作过程,并展示了详细的原始数据及具体步骤。检验中使用了对数转换来处理数据,并通过绘制残差平方与预测值的关系图来检查异方差性。最后对比了检验结果与文献中的差异,提出了疑问。
1017

被折叠的 条评论
为什么被折叠?



