java中如何引入mergesort.mergesort_Merage Sort以及两道leetCode的相关问题

merage sort

Divide-and-conquer

merge sort 的核心理念是 Divide-and-conquer ,这个范式的核心是把问题分割成跟原问题相似的子问题,然后,递归的解决这些子问题,最后把这些子问题的结论合并得到原始问题的答案。Divide-and-conquer 分三步:

Divide 把问题分割成跟原来的问题一致但是规模变小了的子问题。

Conquer 递归的解决子问题。如果问题足够小了,直接解决子问题。

Combine 把子问题的解决方案合并的到原问题的解决方案。

如图所示:

bb82dca89e2d

mergeSort1.png

进一步扩展成更多的递归步骤:

bb82dca89e2d

![merge_sort_recursion.png](http://upload-images.jianshu.io/upload_images/3077991-03c40937f59045ae.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

bb82dca89e2d

dac.png

Merge Sort

Merge Sort 采用的就是Divide-and-conquer ,对于一个数组a[p....r]有以下三步:

Divide 找到p和r的中点q;

Conquer 递归的对每次生成的子数组进行排序;

Combine 把两个排序好的子数组合并成一个排序好的数组。

举一个具体例子:

​ 对于一个数组 array[0..7] [14, 7, 3, 12, 9, 11, 6, 2] .

在divide 阶段,我们计算出来一个中值q=3

在conquer 阶段,我们分别对两个子数组array[0..3], [14, 7, 3, 12] 和 array[4..7], [9, 11, 6, 2] 进行排序。当我们完成conquer ,两个数组都是有序的分别是 [3, 7, 12, 14] 和 [2, 6, 9, 11],最后我们得到完整的数组[3, 7, 12, 14, 2, 6, 9, 11]

最后在combine阶段,我们合并(merge) 两个数组,得到最终的有序数组[2, 3, 6, 7, 9, 11, 12, 14]

我们用图形来演示一下这个过程:

bb82dca89e2d

![Uploading Merge-sort-example-300px_933644.gif . . .]

再来两个动图演示一下:

bb82dca89e2d

Merge-sort-example-300px.gif

bb82dca89e2d

Merge_sort_animation2.gif

Java 实现

public void mergeSort(int[] A, int start, int end, int[] temp) {

if(start >= end) {

return;

}

int left = start;

int right = end;

int mid = (start + end) / 2;

mergeSort(A, start, mid, temp);

mergeSort(A, mid + 1, end, temp);

merge(A, start, mid, end, temp)

}

public void merge(int[] A, int start, int mid, int end, int[] temp) {

int left = start;

int right = mid + 1;

int index = start;

while(left <= mid && right <= end) {

if(A[left] < A[right]) {

temp[index++] = A[left++];

} else {

temp[index++] = A[right++];

}

}

while(left <= mid) {

temp[index++] = A[left++];

}

while (right <= end) {

temp[index++] = A[right++];

}

for(index = start; index <= end; index++) {

A[index] = temp[index];

}

}

LeetCode 衍生问题

算法前面说的比较清楚,直接说两个比较难的问题:

Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

public class ListNode {

int val;

ListNode next;

ListNode(int x) {val = x;}

}

解法1:

ListNode dummy = new ListNode(0);

public ListNode mergeKLists(ListNode[] list) {

if(lists.length == 0) return null;

int i = 0;

int j = lists.length - 1;

while( j != 0 ) {

while(i < j) {

lists[i] = mergeTwo(lists[i++], lists[j--]);

}

i = 0;

}

return lists[0];

}

public ListNode mergeTwo(ListNode node1, ListNode node2) {

ListNode head = dummy;

while(node1 != null && node2 != null) {

if(node1.val < node2.val) {

head.next = node1;

node1 = node1.next;

}

head = head.next;

}

if(node1 != null) {

head.next = node1;

}

if(node2 != null) {

head.next = node2;

}

return dummy.next;

}

解法2,我们借助java的优先级队列(PriorityQueue)来解这个问题:

public ListNode mergeKLists(ListNode[] lists) {

PriorityQueue heap = new PriorityQueue<>(new Comparator() {

@Override

public int compare(ListNode o1, ListNode o2) {

return o1.val - o2.val;

}

});

for(ListNode n : lists) {

if(n != null) {

heap.add(n);

}

}

ListNode head = heap.peek();

while(!heap.isEmpty()) {

ListNode min = heap.poll();

if (min.next != null) {

heap.add(min.next);

}

min.next = heap.peek();

}

return head;

}

优先级队列实现了一种通过堆排序来解决问题的方案。

第二个问题 Merge Intervals:

Given a collection of intervals, merge all overlapping intervals.

For example,

Given [1,3],[2,6],[8,10],[15,18],

return [1,6],[8,10],[15,18].

数据结构如下:

public class Interval {

int start;

int end;

Interval() {start = 0; end = 0;}

Interval(int s, int e) {start = s; end = e;}

};

解法1:

public List merge(List intervals) {

if (intervals == null || intervals.size() <=1 ) return intervals;

List merged = new ArrayList<>();

//对输入进行一下排序

Collections.sort(intervals, new Comparator() {

@Override

public int compare(Interval o1, Interval o2) {

if(o1.start != o2.start) {

return o1.start - o2.start;

}

return o1.end - o2.end;

}

});

int startMin = intervals.get(0).start;

int endMax = intervals.get(0).end;

for (int i = 1; i < intervals.size(); i++) {

int start = intervals.get(i).start;

int end = intervals.get(i).end;

if (start > endMax) {

merged.add(new Interval(startMin, endMax));

//完成一个节点的添加;

startMin = start;

endMax = end;

} else {

//吞掉一个节点;

endMax = Math.max(end, endMax);

}

}

merged.add(new Interval(startMin, endMax));

return merged;

}

解法2(原地排序,空间占用率低):

public List merge(List intervals) {

if (intervals == null || intervals.size() < 2) {

return intervals;

}

intervals.sort(new Comparator() {

@Override

public int compare(Interval o1, Interval o2) {

return o1.start - o2.start;

}

});

int length = 1;

for(int i = 1; i < intervals.size(); i++) {

if(intervals.get(length - 1).end < intervals.get(i).start) {

intervals.set(length++, intervals.get(i));

} else {

intervals.get(length - 1).end = Math.max(intervals.get(length - 1).end, intervals.get(i).end);

}

}

return intervals.subList(0, length);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值