合法布阵问题
P1879 [USACO06NOV]玉米田Corn Fields
题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在肥沃的草地上,但是要求所有牛不能相邻,问你有多少种放法。
分析:假如我们知道每行都有x种合法放法(也就是x种状态),所以对于第i行就有x种放法,那么对于第i+1行的每种放法就有对应的x种放法。
所以定义dp[i][j]表示第i行状态为j时的方法数(j=0,j<=x;j++),有转移方程:dp[i][j]=sum(dp[i-1][k]) k表示i-1行的状态(k=0,k<=x;k++)。
然而,动归方程想出来了还远远不够……/*orz_wa*/
1、预处理第i行的草地map[i],用一个二进制数表示,1表示不能放,0表示可以放。如map[1]=15,转成二进制数就是01111,就说明是 放,不放,不放,不放,不放。二进制的神奇!!!
(常理应该是1能放 0不能放,具体原因等下就知道了,主要是方便位运算)。
2、预处理第i行符合条件(不相邻)的状态st[i],每行共有(1<<m)-1种状态(一个点2种,二个点4种,三个点8种……)。(i=1;i<=(1<<m)-1;i++)
但是很多是相邻的,怎么判断某一状态是否相邻:i&(i<<1)
3、怎么处理肥沃贫瘠问题呢,对于第i行的地形map[i]和某一状态st[k],如果map[i]&st[k]>=1(如map[2]=10010,st[2]=01110,那么map[2]&st[2]=00010=2>1,所以重复了,关键:同1为1,否则为0)即说明出现了放到贫瘠草地的情况
4、对于第i行不和i-1行相邻,st[i]&st[i-1]>=1,同上(3)即不满足(转换为st[i]&st[i-1]==0),st[i]是第i行的状态,st[i-1]是i-1行的状态
代码:
#include <cstdio> #include <cstring> #include <iostream> using namespace std; const int mod=100000000; int n,m; int st[1<<12],map[1<<12];//分别表示每一行的状态和草地的状态 int dp[15][1<<12]; int main() { scanf("%d%d",&n,&m); int x; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) { scanf("%d",&x); if(x==0)map[i]=map[i]|(1<<j-1); } int k=0; for(int i=0;i<=(1<<m)-1;i++)//计算每行合法的放置方式 { if(!(i&(i<<1)))st[++k]=i; } for(int i=1;i<=k;i++)//特判第一行 { if(!(st[i]&map[1]))dp[1][i]=1; } for(int i=2;i<=n;i++) //列举每一行(除了第一行) { for(int j=1;j<=k;j++) //每行可能情况 { if(!(map[i]&st[j])) //符合土地肥沃贫瘠 for(int r=1;r<=k;r++) //i-1行的情况 { if(!(map[i-1]&st[r])) // i-1行r状态符合土地肥沃贫瘠 { if(!(st[j]&st[r])) // i行j状态和i-1行r状态是否相邻 dp[i][j]+=dp[i-1][r]; //加方案数量 } } } } int ans=0; for(int i=1;i<=k;i++) { ans=(ans+dp[n][i])%mod; //答案?? } printf("%d",ans); return 0; }
总结:确定状态,从一维转向二维……(做多了就有经验,from_Mr.Li)