matlab光流法前景分割,使用高斯模型去除背景

这篇博客介绍了如何使用MATLAB中的高斯模型进行背景去除,以实现固定摄像机下的运动物体检测。通过建立单高斯分布背景模型,判断像素点是否属于背景,从而区分前景和背景。模型参数随时间更新,更新率由变量α控制。在实践中,不更新方差d,仅更新平均值u,以适应背景的缓慢变化。背景模型通过训练得到,并在处理中不断更新。
摘要由CSDN通过智能技术生成

使用高斯模型去除背景

收录时间:2014-07-24

资源分类:Matlab 工具:MATLAB 7.11 (R2010b)

单高斯分布背景模型适用于单模态背景情形,它为每个图像点的颜色分布建立了用单个高斯分布表示的模型η(x,μt,Σt),其中下标t表示时间。设图像点的当前颜色度量为Xt,若η(x,μt,Σt)≤Tp(这里Tp为概率阈值),则该点被判定为前景点,否则为背景点(这时又称 X t与 η ( x ,μt,Σt)相匹配)。在实际应用中,可以用等价的阈值替代概率阈值。如记dt=Xt-μt,在常见的一维情形中,以σt表示均方差,则常根据dt/σt的取值设置前景检测阈值:若dt/σt>T,则该点被判定为前景点,否则为背景点。单高斯分布背景模型的更新即指各图像点高斯分布参数的更新。引入一表示更新快慢的常数——更新率α ,则该点高斯分布参数的更新可表示为:

μt+1=(1-α)*μt+α*dt(t+1是下标) Σt+1 =(1-α )*Σt+α*dt*dt

运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值