使用高斯模型去除背景
收录时间:2014-07-24
资源分类:Matlab 工具:MATLAB 7.11 (R2010b)
单高斯分布背景模型适用于单模态背景情形,它为每个图像点的颜色分布建立了用单个高斯分布表示的模型η(x,μt,Σt),其中下标t表示时间。设图像点的当前颜色度量为Xt,若η(x,μt,Σt)≤Tp(这里Tp为概率阈值),则该点被判定为前景点,否则为背景点(这时又称 X t与 η ( x ,μt,Σt)相匹配)。在实际应用中,可以用等价的阈值替代概率阈值。如记dt=Xt-μt,在常见的一维情形中,以σt表示均方差,则常根据dt/σt的取值设置前景检测阈值:若dt/σt>T,则该点被判定为前景点,否则为背景点。单高斯分布背景模型的更新即指各图像点高斯分布参数的更新。引入一表示更新快慢的常数——更新率α ,则该点高斯分布参数的更新可表示为:
μt+1=(1-α)*μt+α*dt(t+1是下标) Σt+1 =(1-α )*Σt+α*dt*dt
运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运