洛谷P4562 [JXOI2018]游戏(组合数学)

题意

题目链接

Sol

这个题就比较休闲了。

\(t(p)\)显然等于最后一个没有约数的数的位置,那么我们可以去枚举一下。

设没有约数的数的个数有\(cnt\)

因此总的方案为\(\sum_{i=cnt}^{r-l+1} C_{i-1}^{cnt-1} cnt! (r - l + 1 - cnt)!\)

稍微有点卡常,筛的时候加一下剪枝

#include<bits/stdc++.h>
#define Fin(x) freopen(#x".in", "r", stdin);
using namespace std;
const int MAXN = 1e7 + 10, mod = 1e9 + 7;
template<typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;}
template<typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;}
template<typename A, typename B> inline A mul(A x, B y) {return 1ll * x * y % mod;}
template<typename A, typename B> inline void add2(A &x, B y) {x = x + y >= mod ? x + y - mod : x + y;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int fac[MAXN], ifac[MAXN], vis[MAXN], cnt;
int fp(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = mul(base, a);
        a = mul(a, a);  p >>= 1;
    }
    return base;
}
int C(int N, int M) {
    return mul(fac[N], mul(ifac[M], ifac[N - M]));
}
int main() {
    int l = read(), r = read();
    for(int i = l; i <= r; i++) {
        if(vis[i]) continue;
        if(!vis[i]) cnt++;
        for(int j = i + i; j <= r; j += i) 
            vis[j] = 1;
    }
    fac[0] = 1;
    for(int i = 1; i <= r; i++) fac[i] = mul(i, fac[i - 1]);
    ifac[r] = fp(fac[r], mod - 2);
    for(int i = r; i; i--) ifac[i - 1] = mul(ifac[i], i);
    int ans = 0;
    for(int i = cnt; i <= r - l + 1; i++) 
        add2(ans, mul(i, mul(C(i - 1, cnt - 1), mul(fac[cnt], fac[r - l + 1 - cnt]))));
    cout << ans;
    return 0;
}

转载于:https://www.cnblogs.com/zwfymqz/p/10438104.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值