Luogu5289 十二省联考2019皮配(动态规划)

本文深入探讨了算法竞赛中背包问题的一种特殊解法,通过将选择导师问题转化为背包问题,提出了从阵营和派系角度出发的O(nm²)暴力解法,并进一步优化至O(nm+kmΣsk)复杂度。文章详细介绍了如何处理有限制和无限制学校的选择过程,为算法爱好者提供了一种新的思考角度。
摘要由CSDN通过智能技术生成

  将选择导师看成先选阵营再选派系,这样有显然的O(nm2)暴力,即按城市排序后,设f[i][j][k]为前i个学校中第一个阵营有j人第一个派系有k人的方案数,暴力背包。

  对于k=0,可以发现选阵营和选派系是两个独立的过程。于是O(nm)暴力背包再将方案数相乘即可。

  考虑原题,注意到如果一个城市不包含有限制的学校,可以直接使用k=0的方法;对于同城市存在有限制学校而自身没有限制的,其选择派系的过程与限制无关,可以将这部分背包,而选择阵营的过程则和有限制学校放在一起用最开始的暴力完成,这里同一城市的无限制学校可以合并起来。于是复杂度O(nm+km2)。稍微卡一下可以做到复杂度O(nm+kmΣsk),其中Σsk为有限制学校总人数。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
#define M 2510
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return x*f;
}
int T,n,c,k,C0,C1,D0,D1,S,dslk[N],id[N],f[M],g[M],h[M][M],h2[M][M];
bool islim[N];
struct data
{
	int x,y,i;
	bool operator <(const data&a) const
	{
		return x<a.x;
	}
}a[N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
	freopen("a.in","r",stdin);
	freopen("a.out","w",stdout);
	const char LL[]="%I64d\n";
#else
	const char LL[]="%lld\n";
#endif
	T=read();
	while (T--)
	{
		n=read(),c=read();
		C0=read(),C1=read(),D0=read(),D1=read();S=0;
		for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read(),a[i].i=i,S+=a[i].y;
		sort(a+1,a+n+1);
		for (int i=1;i<=n;i++) id[a[i].i]=i;
		C1=max(0,S-C1),D1=max(0,S-D1);
		k=read();
		memset(dslk,0,sizeof(dslk));
		memset(islim,0,sizeof(islim));
		for (int i=1;i<=k;i++)
		{
			int x=id[read()],y=read();
			dslk[x]=y+1;islim[a[x].x]=1;
		}
		memset(f,0,sizeof(f));memset(g,0,sizeof(g));memset(h,0,sizeof(h));
		f[0]=g[0]=1;h[0][0]=1;
		int tot=0,tot2=0;
		for (int i=1;i<=n;i++)
		{
			int t=i;
			while (t<n&&a[t+1].x==a[i].x) t++;
			int s=0;
			for (int j=i;j<=t;j++)
			if (!dslk[j])
			{
				s+=a[j].y;
				for (int k=D0;k>=a[j].y;k--) inc(g[k],g[k-a[j].y]);
			}
			if (islim[a[i].x])
			{
				for (int j=i;j<=t;j++)
				{
					tot+=a[j].y;
					if (dslk[j]) tot2+=a[j].y;
				}
				for (int x=0;x<=min(tot,C0);x++)
					for (int y=0;y<=min(tot2,D0);y++)
					h2[x][y]=x>=s?h[x-s][y]:0;
				for (int j=i;j<=t;j++)
				if (dslk[j])
				{
					for (int x=min(tot,C0);x>=0;x--)
						for (int y=min(tot2,D0);y>=0;y--)
						{
							h2[x][y]=0;
							if (dslk[j]!=1&&x>=a[j].y&&y>=a[j].y) inc(h2[x][y],h2[x-a[j].y][y-a[j].y]);
							if (dslk[j]!=2&&x>=a[j].y) inc(h2[x][y],h2[x-a[j].y][y]);
						}
				}
				for (int j=i;j<=t;j++)
				if (dslk[j])
				{
					for (int x=min(tot,C0);x>=0;x--)
						for (int y=min(tot2,D0);y>=0;y--)
						{
							if (dslk[j]==4) h[x][y]=0;
							if (dslk[j]!=3&&y>=a[j].y) inc(h[x][y],h[x][y-a[j].y]);
						}
				}
				for (int x=0;x<=min(tot,C0);x++)	
					for (int y=0;y<=min(tot2,D0);y++)
					inc(h[x][y],h2[x][y]);
			}
			else for (int k=C0;k>=s;k--) inc(f[k],f[k-s]);
			i=t;
		}
		for (int i=1;i<=C0;i++) inc(f[i],f[i-1]);
		for (int i=1;i<=D0;i++) inc(g[i],g[i-1]);
		int ans=0;
		for (int i=0;i<=C0;i++)
			for (int j=0;j<=D0;j++)
			inc(ans,1ll*(f[C0-i]-f[max(C1-i,0)-1]+P)*(g[D0-j]-g[max(D1-j,0)-1]+P)%P*h[i][j]%P);
		cout<<ans<<endl;
	}
	return 0;
}

 

  

 

转载于:https://www.cnblogs.com/Gloid/p/10680815.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值