图论

图论:
三元组<V(G),E(G),YG>,其中V(G)是一个非空的节点集(顶点集),E(G)是边集,YG是E(G)到节点偶对(无序偶((v1,v2)于(v2,v1)相等)或有序偶)集上的函数。

1.设G=<V(G),E(G),Y(G)>,其中V(G)={v1,v2,v3},E(G)={e1,e2},YG(e1)=(v1,v2),YG(e2)=(v1,v3).

可以简记为G=<V,E>,V(非空节点集),E(用节点偶对表示的边集)。
一般用V(G)表示G的节点集,E(G)表示G的边集
2.设G=<V,E>,V={v1,v2,v3,v4},E={(v1,v2),(v1,v3),(v2,v4)}
若边所对应的偶对是有序的,记为<a,b>,则这个边是有向边(弧)。
(1)a,b分别称为弧的始点与终点,并称为边的端点。称边是关联于节点a和b的,节点a和b是相邻的,或称节点a和节点b是邻接的。
若边所对应的偶对是无序的,记为(a,b),则称这个边是无向边(简称棱)。约定用[a,b]表示<a,b>或(a,b)
(2)不与任何节点相邻的节点称为孤立节点,全由孤立节点构成的图称为零图。
在无向图中,两个节点间(包括节点自身间)若多于一条边,则称这几条边为重边或平行边,两节点a,b间相互平行的边的条数称为以节点a,b为端点的边的重数。
(3)
仅一条边时重数是1,无边是时是0.含有重边的图称为多重图,非多重图称为线图。
(4)无自回路的线图称为简单图。


2.赋权图G是一个三元组<V,E,f>,V是节点集,E是边集,f是定义在E上的函数。通常可以将f定义为E上的实函数,即图中的每条边对应一个实数。
若将图G中的节点也对应一个实数,则赋权图G是一个四元组<V,E,f,g>,f是定义在E上的函数,g是定义在V上的函数。


3.设图G=<V,E>有n个节点,图H=<V,E'>也有同样的节点而E'是有n个节点的完全图的边删去E所得,则图H称为图G的补图,

4.设G=<V,E>和G'=<V',E'>是两个图。
若V'包含于V,且E'包含于E,则称G'是G的子图。
若V'包含于,不等于V,且E'包含于,不等于E,E,则称G'是G的真子图。
若V'=V和E'包含于E,则称G'是G的生成子图。
若子图G'中没有孤立节点,G'由E'唯一确定,则称G'为由边集E'导出的子图。
若子图G'中,对V'中的任意两个节点u,v,当u,v属于V'时有[u,v]属于E',则G'由V'唯一确定,称G'为由节点集V'导出的子图。

5.设G'=<V',E'>是G=<V,E>的子图,若给定另一个图G"=<V",E">,使得E"=E-E',且V"中仅包含E"的边所关联的结点,则称G"是子图G'的相对于G的补图。

 

6。图G=<V,E>中,与V中结点v(v属于V)相关联的边,称为该结点的度数。记作deg(v). 记Δ(G)=max{deg(v)|v∈V(G)},δ(G)=min{deg(v)|v∈V(G)}
分别称为G=<V,E>的最大度和最小度。

握手定理:设G是一个图,其结点集合为V,边集合为E,则∑(v∈V)deg(v)
=2|E|.
证明:
因为每一条边必关联两个结点,每一条边给于关联的每个结点的度数为1,所以一个图中,结点度数的和等于边数的两倍。

7.图中度数为奇数的结点为偶数个。
证明:
设V1,V2分别是图G中的奇数度数和偶数度数的结点集,则由定理可得:
∑(v∈V1)deg(v)+∑(v∈V2)deg(v)=∑(v∈V)deg(v)=2|E|

8.在任何有向图中,所有的入度之和等于所有的结点的出度之和。
证明:
因为每条有向边对应一个入度和一个出度,若一个结点具有一个入度或出度,则必关联一条有向边,故有向图中各结点的入度之和等于边数,各结点的出度之和也等于变数,因此有向图中的入度和出度之和相等


同构:
9.设G=<V,E>和G'=<V',E'>是两个图,若存在从V到V'的双射函数f,使对任意[a,b]∈E,当且仅当[f(a),f(b)]∈E',并且[a,b]和[f(a),f(b)]有相同的重数,则称G和G'是同构的。
两个同构的图在一定意义上是具有相同的结构。
两个图同构的必要条件:
(1)结点数相同
(2)边数相同
(3)度数相同的结点数相等。

邻接矩阵:
10.设G=<V,E>是一个简单图,其中V={v1,v2,v3,v4..vn},则n阶方阵A(G)=(aij)称为G的邻接矩阵,其中aij={1 ,vi与vj相邻;0vi与vj不相邻 i=j}

(1)无向简单图的邻接矩阵为对称的。有向图的邻接矩阵不一定对称。
(2)图G的邻接矩阵是不唯一的,而是与结点集V中的元素标定的次序有关,但这些邻接矩阵经过适当的交换行和列的次序,就可以相互转化。
(3)当有向线图代表关系时,邻接矩阵就可以看做是一种关系矩阵。
(4)零图的邻接矩阵的元素全为零,称该矩阵为零矩阵。
(5)当图的每一个结点都有自回路而再无其他的边,图的邻接矩阵是单位矩阵;

 

 


连通性和连通度:
在图G=<V,E>中,设v0,v1....vn∈V,e1,e2...en∈E,其中ei是关联于节点vi-1,vi的边,交替序列v0e1v1e2....envn称为联结v0到vn的路径(路)
v0与vn分别称为路的起点和终点,边的数目n称为路的长度。
若序列中所有的边e1,e2,...en均互不相同,则称此路经为简单路径。
若序列中所有的点v0,v1,..vn均互不相同,则称此路径为基本路径。
长度是奇(偶)数的圈称为奇(偶)圈。
v1e1v2e2v1:简单回路=基本回路(圈)
2.(1)在具有n个节点的简单图G=<V,E>中,若从节点vj到结点vk有一条路,则从结点vj到vk必存在一条长度不大于n-1的路。
证明:
设从结点vj到结点vk有一条路,设vj,...,vi,...,vk是所经节点,若路中有m条边,则序列中有m+1个节点。
若m>n-1,则必有节点如vh重复出现,即路可表示为vj..,vh,...,vh,...vk,
当删去从vh到vh的边,其仍为从vj到vk的路。
(2)在具有n个结点的图G<V,E>中,如果经v有一条简单回路,则经v有一条长度不超过n的基本回路。
(3)若G是平凡图或G中任意两个结点都是连通的,则称G是连通图,否则G为非连通图或分离图。
从结点间的连通性定义可以看出,连通关系是结点集合V上的等价关系。
这种等价关系可对结点集合V作一个划分,即可将结点集V分成非空子集V1,V2,..Vm,使得两个结点vj与vk是连通的,当仅当他们属于同一个Vi,连通关系的商集为{V1,V2,...Vm}
(4)设G=<V,E>是图,连通关系的商集为{v1,v2,...vm},
则其导出的子图G(Vi)称为G的连通分支(图),将图G的连通分支数记作W(G),
(5)在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G是单向(侧)连通的;
若在任何结点偶对中,两结点对互相可达,则称图G是强连通的;
若图G的底图,在图G中略去边的方向,得到的无向图是连通的则称图G是弱连通的。

3.在简单有向图G=<V,E>中,G'是G的子图,如G'是强连通的(单向连通的,弱连通的),且没有包含G'的更大的子图G"是强连通的(单向连通的,弱连通的),则G'是极大强连通子图(极大单向连通子图,极大弱连通子图)又叫强分图(单向分图,弱分图)。
4.一个有向图是强联通的,当且仅当G有一个回路,其至少包含每个结点一次。
证明:
充分性:
若G中有一个回路,其至少包含每个结点一次,则G中任连个结点都是互相可达的,故G是强连通图。
必要性:
若有向图G是强连通的,则任意两个结点都是互相可达的,故必可作一回路经过图中的所有结点,否则必有一回路不包含某一结点v,且v与回路上的个结点就不是互相可达的,此与强连通条件矛盾。


5.设无向图G=<V,E>为连通图,若有点集V1完全包含于V,使图G删除了V1的所有结点后,所得的子图是不连通图,而删除了V1的任意任何真子集后,所得的图是连通图,则称V1是G的一个点割集,若某个结点构成一个点割集,则称该点为割点。
6.若G为无向连通图且不包含Kn为生成子图,则称K(G)=min{|V1|V1是G的一个点割集}为G的点连通度(连通度)。
完全图Kn的点连通度为n,n>=1;非连通图的点连通度为0.
若(k(G))>=k,则称G为k点--连通图。连通度(k(G))是产生一个不连通图所需要删除的点的最少数目。

7,设无向图G=<V,E>为连通图,若有边集E1真包含于E,使图G删除了E1的所有边后,所得的子图是不连通图,而删除了E1的任何真子集后,所得的子图是连通图,则称E1是G的一个边割集,若某个边构成一个边割集,则称改变为割边(桥)。

8对于任意图G,有k(G)<=λ(G)<=δ(G)其中k(G)、λ(G)、δ(G)分别为G点的点连通度,边连通度和最小度。

 


欧拉图:
1.(1)给定无孤立节点图G,若存在一条路经过图G的每条边一次且仅一次,则该路称为欧拉路;
若存在一条回路经过图G的每条边一次且仅一次,则该回路称为欧拉回路。
(2)具有欧拉回路的图称为欧拉图。
具有欧拉路但无欧拉回路的图称为半欧拉图。规定平凡图为欧拉图
(3)无向图G具有一条欧拉路,当且仅当G是连通的,且有零个或2个奇数度数的结点。
证明:必要性:如果图具有欧拉路,则该图必定是连通的。
当顺着这条路画出时,每次碰到一个结点,都需要通过关联于这个结点的两条边,且这两条边在以前未通过。
因此,出路两端的结点外,图中任何结点的度数必为偶数。
若欧拉路的两端点不同,则就是仅有的两个结点,如它们重合,则所有结点都有偶数度,且这条欧拉路径称为一条欧拉回路,。
(4)一个无向图具有一条欧拉回路,当且仅当该图是连通的,并且它的结点度数都是偶数。

汉密尔顿图:
2.一个有向图具有单向欧拉回路,当且仅当它是连通的,且每个结点的入度等于出度,。该路称为汉密尔顿路;若存在一条回路经过图G的每个结点一次且仅一次,则该回路称为汉密尔顿回路,。
(1)若图G=<V,E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S均有W(G-S)<=|S|成立,其中W(G-S)是(G-s)中的连通分子数。
证明:
设C是G的一条汉密尔顿回路,则对于V的任何一个非空子集S,在C中删去S中任一结点a1,则C-a1是连通的非回路,若删去S中的另一个结点a2,则W(C-a1-a2)<=2;
由归纳法得知 W(C-S)<=|S|
同时C-S是G-S的一个生成子图,因此 W(G-S)<=W(C-S),所以W(G-S)<=|S|

(2)设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数和大于等于n-1,则在G中存在一条汉密尔顿路。

转载于:https://www.cnblogs.com/zhubenxi/articles/5153922.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值