离散数学第七章 图论

离散数学第七章 图论


7-1 图的基本概念

一个图是由一些结点和连接两个结点之间的连线所组成,至于连线的长度及结点的位置是无关紧要的

G=<V,E>:V是非空结点集,E是连接结点的边集

无向边:某条边与某结点不相关联

有向边:某条边与某结点相关联

无向图:每一条边都是无向边的图

有向图:每一条边都是有向边的图

混合图:图中一些边是有向边,另一些边是无向边

邻接点:在一个图中,两个结点由一条有向边或一条无向边关联

孤立结点:在一个图中不与任何结点相邻接的结点

零图:仅由孤立结点组成的图

平凡图:仅由一个孤立结点构成的图

邻接边:关联于同一结点的两条边

自回路/环:关联于同一结点的一条边

​ 环的方向是没有意义的,它既可作为有向边,也可作无向边

平行边:连接于同一对结点的多条边

结点的度数:1. 图G=<V,E>中,与结点v(v∈V)关联的边数,称作是该结点的度数,记作deg(v)

​ 2. 每个环在其对应结点上度数增加2

​ 3.最大度:∆(G),最小度:δ(G)

​ 4.每个图中,结点度数的总和等于边数的两倍

​ 5.在任何图中,度数为奇数的结点必定是偶数个

​ 6.入度/出度:在有向图中,射入一个结点的边数称为该结点的入度,由一个结点射出的边数称为该结点的出度

​ 在任何有向图中,所有结点的入度之和等于所有结点的出度之和

​ 入度与出度之和就是该结点的度数

多重图:含有平行边的任何一个图

简单图:不含有平行边和环的图

完全图

  • 简单图G=<V,E>中,若每一对结点之间都有边相连,则称该图为完全图
  • 有n个结点的无向完全图记作Kn
  • n个结点的无向完全图Kn的边数为1/2·n(n-1)
  • 如果在Kn中,对每条边任意确定一个方向,就称该图为n个结点的有向完全图,其边数也为1/2·n(n-1)

补图:给定一个图G,由G中所有结点和所有能使G成为完全图的添加边组成的图,称为G的相对于完全图的补图,或简称为G的补图

子图:设图G=<V,E>,如果有图G‘=<V’,E’>,且E’⊆E,V’⊆V,则称G‘为G的子图

设G’=<V’, E’>是图G-<V, E>的子图,若给定另外一个图G"=<V", E">使得E"=E-E’,且V"中仅包含E"的边所关联的结点。则称G"是子图G’的相对于图G的补图

定义G=<V,E>,G’=<V’,E’>

  • G’⊆G——G’称为G的子图,G为G’的母图
  • 若G‘⊆G且V’⊆V,则称G’为G的生成子图
  • 若V’⊆V或E’⊆E,称G’为G的真子图

同构:

  • 充要条件:两个图的结点和边分别存在着一一对应,且保持关联关系

  • 两图同构的必要条件:

    • 结点数目相同
    • 边数相等
    • 度数相同的结点数目相等

    (这几个条件不是两个图同构的充分条件)


7-2 路与回路

路、回路、圈的定义:

在这里插入图片描述

定理:在一个具有n个结点图中,如果从结点v(i)到结点v(j)存在一条路,则从结点v(i)到结点v(j)必存在一条不多于n-1条边的路

推论:在一个具有n个结点的图中,若从结点v(j)到v(k)存在一条路,则必存在一条从v(j)到v(k)而边数小于n的通路

连通定义:在无向图G中,结点u和v之间若存在一条路,则称结点u和结点v是连通的。

  • 对结点集V做出一个划分,把V分成非空子集V₁,V₂,…,V(n),使得两结点v(i)和v(j)是连通的,当且仅当它们属于同一个V(i),我们把子图G(V₁),G(V₂),···,G(V(n))称为图G的连通分支(图),今后我们把图G的连通分支书记作W(G)

连通图:若图G只有一个连通分支,则称G是连通图

  • 在连通图中,任意两个结点之间必是连通的

删除结点v:把v以及与v关联的边都删去

删除某边:仅需把该边删去

点割集 定义:

设无向图G=<V,E>为连通图,若有点集V₁⊂V,满足:

  1. 图G删除了V₁的所有结点,所得的子图是不连通图
  2. 删除了V₁的任何真子集后,所得到的子图仍是连通图

则称V₁是G的一个点割集

  • 若某一个结点构成一个点割集,则称该结点为割点

eg.

在这里插入图片描述

(点)连通度k(G) 定义:

在这里插入图片描述

在这里插入图片描述

边割集 定义:

设无向图G=<V,E>为连通图,若有点集E₁⊂E,满足:

  1. 图G删除了E₁的所有边,所得的子图是不连通图
  2. 删除了E₁的任何真子集后,所得到的子图仍是连通图

则称E₁是G的一个边割集

  • 若某一个边构成一个边割集,则称该边为割边(或桥)

边连通度λ(G):

在这里插入图片描述

定理

  • 对于任何一个图G,有:k(G)≤λ(G)≤δ(G)

  • 有割边一定有割点,有割点不一定有割边

  • 一个连通无向图G中的结点v是割点的充分必要条件是存在两个结点u和w,使得结点u和w的每一条路都通过v

可达性 定义:

在这里插入图片描述

结点距离,直径 定义:

在这里插入图片描述
在这里插入图片描述

单侧连通:在简单有向图G中,任何一对结点间,至少有一个结点到另一个结点是可达的,则称这个图是单侧连通的

在这里插入图片描述

强连通:如果对于图G中的任何一对结点两者之间是相互可达的,则称这个图是强连通的

在这里插入图片描述

弱连通:如果在图G中略去边的方向,将它看成无向图后,图是连通的,则称该图是弱连通的

在这里插入图片描述

  • 若图G是强连通的,则必是单侧连通的
  • 若图G是单侧连通的,则必是弱连通的

这两个命题,其逆不真

  • 一个有向图是强连通的,当且仅当G中有一个回路,它至少包含每个结点一次

强分图:在简单有向图中,具有强连通性质的最大子图,称为强分图

单侧分图:具有单侧连通性质的最大子图

弱分图:具有弱连通性质的最大子图

在这里插入图片描述

  • 在有向图G=<V,E>中,它的每一个结点位于且只位于一个强分图中

7-3 图的矩阵表示

邻接矩阵

定义:

在这里插入图片描述

eg.

在这里插入图片描述
在这里插入图片描述

v(i)到v(j)长度为l的路的数目

在这里插入图片描述

(对无向图也成立)

  • 在这里插入图片描述

可达性矩阵

定义:

在这里插入图片描述

在这里插入图片描述

eg.

在这里插入图片描述

完全关联矩阵

无向图

在这里插入图片描述

eg.

在这里插入图片描述

从关联矩阵中可以看出图形的一些性质:

  1. 图中每一边关联两个结点,故M(G)的每一列中只有两个1
  2. 每一行中元素的和数是对应结点的度数
  3. 一行中元素全为0,其对应的结点为孤立结点
  4. 两个平行边其对应的两列相同
  5. 同一个图当结点或边的编序不同时,其对应的M(G)仅有行序、列序的差别

有向图

在这里插入图片描述

在这里插入图片描述

eg.

在这里插入图片描述


结点加法v₁v₂=v₁₂,实质上是把图G的结点v₁和v₂合并得到图G‘

在这里插入图片描述

此外,在M(G’)中若有某些列,其元素全为0,说明由G中的一些结点合并后,消失了一些对应边

eg1.

在这里插入图片描述

(0+0=0,0+1=1,1+1=0)

eg2.

在这里插入图片描述
在这里插入图片描述

定理:如果一个连通图G有r个结点,则其完全关联矩阵M(G)的秩为r-1,即rank M(G)=r-1

推论:设图G有r个结点,w个最大连通子图,则图G完全关联矩阵的秩为r-w


7-4 欧拉图与汉密尔顿图

欧拉家族

欧拉路:给定无孤立结点图G,若存在一条路,经过图中每边一次且仅一次,该条路称为欧拉路

欧拉回路:若存在一条回路,经过图中每边一次且仅一次,该回路称为欧拉回路

欧拉图:具有欧拉回路的图

  • 无向图G具有一条欧拉路,当且仅当G是连通的,且有零个(欧拉图)或两个(半欧拉图)奇数度结点

  • 无向图G具有一条欧拉回路,当且仅当G是连通的,并且所有结点度数全为偶数

单向欧拉路(回路):给定有向图G,通过图中每边一次且仅一次的一条单向路(回路),称作单向欧拉路(回路)

  • 有向图G有一条单向欧拉回路,当且仅当是连通的,且每个结点入度等于出度
  • 一个有向图G有单向欧拉路,当且仅当它是连通的,而且除了两个结点外,每个结点的入度等于出度,但这两个结点中,一个结点的入度比出度大1,另一个结点的入度比出度小1

汉密尔顿家族

汉密尔顿路:给定图G,若存在一条路经过图中的每个结点恰好一次,这条路称作汉密尔顿路

汉密尔顿回路:若存在一条回路经过图中的每个结点恰好一次,这条路称作汉密尔顿回路

汉密尔顿图:具有汉密尔顿回路的图

  • 若图G=<V,E>具有汉密尔顿回路,则对于结点集V的每个非空子集S均有W(G-S)≤|S|成立。(W(G-S)是G-S中连通分支数)
  • 设G具有n个结点的简单图,如果G中每一对结点度数之和大于等于n-1,则在G中存在一条汉密尔顿路(一个无向图具有汉密尔顿路的充分条件)
  • 设G具有n个结点的简单图,如果G中每一对结点度数之和大于等于n,则在G中存在一条汉密尔顿回路
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值