codeforces986F Oppa Funcan Style Remastered【线性筛+最短路】

容易看出是用质因数凑n
首先01个因数的情况可以特判,2个的情况就是ap1+bp2=n,b=n/p2(mod p1),这里的b是最小的特解,求出来看bp2<=n则有解,否则无解
然后剩下的情况最小的质因数p1一定<=1e5,考虑在%p1的意义下做,考虑转成图论,点分别是%p1=x,然后对每个x连边(x+pi)%p1,边权为pi,跑最短路
如果dis[n%p1]<=n就合法,因为这表示可以用和小于n的若干数凑出和n在p1下同余的数,剩下部分用p1填即可

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
const int N=200005,M=31600000;
int t,p[M],tot,con;
long long dis[N],a[N];
bool v[M],ans[N],vis[N];
queue<int>q;
struct qwe
{
    long long n,k,id;
}b[10005];
bool cmp(const qwe &a,const qwe &b)
{
    return a.k<b.k;
}
long long read()
{
    long long r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
long long ksm(long long a,long long b,long long mod)
{
    long long r=1;
    while(b)
    {
        if(b&1)
            r=r*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return r;
}
int main()
{
    t=read();
    for(int i=1;i<=t;i++)
        b[i].n=read(),b[i].k=read(),b[i].id=i;
    v[1]=1;
    for(int i=2;i<M;i++)
    {
        if(!v[i])
            p[++tot]=i;
        for(int j=1;j<=tot&&1ll*i*p[j]<M;j++)
        {
            v[i*p[j]]=1;
            if(i%p[j]==0)
                break;
        }
    }
    sort(b+1,b+1+t,cmp);
    for(int w=1;w<=t;w++)
    {
        long long n=b[w].n,k=b[w].k;
        if(w==1||b[w].k!=b[w-1].k)
        {
            long long x=k;
            con=0;
            for(int i=1;i<=tot&&x>1;i++)
            {
                if(1ll*p[i]*p[i]>x)
                {
                    a[++con]=x;
                    break;
                }
                if(x%p[i]==0)
                {
                    a[++con]=p[i];
                    while(x%p[i]==0)
                        x/=p[i];
                }
            }
        }
        // for(int i=1;i<=con;i++)
            // cerr<<a[i]<<" ";cerr<<endl;
        if(con==0)
            ans[b[w].id]=0;
        else if(con==1)
            ans[b[w].id]=(n%a[1]==0);
        else if(con==2)
            ans[b[w].id]=(1ll*n%a[1]*ksm(a[2],a[1]-2,a[1])%a[1]*a[2]<=n);
        else
        {
            if(w==1||b[w].k!=b[w-1].k)
            {
                for(int i=1;i<=a[1];i++)
                    dis[i]=1e18;
                dis[0]=0;
                vis[0]=1;
                q.push(0);
                while(!q.empty())
                {
                    int u=q.front();//cerr<<u<<endl;
                    q.pop();
                    for(int i=2;i<=con;i++)
                    {
                        int v=(u+a[i])%a[1];
                        if(dis[v]>dis[u]+a[i])
                        {
                            dis[v]=dis[u]+a[i];//cerr<<v<<endl;
                            if(!vis[v])
                            {
                                vis[v]=1;
                                q.push(v);
                            }
                        }
                    }
                    vis[u]=0;
                }
            }//cerr<<dis[n%a[1]]<<endl;
            ans[b[w].id]=dis[n%a[1]]<=n;
        }
    }
    for(int i=1;i<=t;i++)
        puts(ans[i]?"YES":"NO");
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/11005566.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值