bzoj4985 评分 (二分答案+dp)

首先二分一个答案x,然后我们把>=x的数看成1,<x的数看成0,那如果最后剩下1,这个答案就是合法的。

那我们就来算让某一位得1至少需要填几个1(设这个值是f[i])

i=1..n时,显然,如果i已经固定,f[i]=0或inf(取决于原来是1还是0);如果i还没有固定,那f[i]=1

然后每次就可以由前三个转移到最后一个,也就是取这三个中f[i]较小的两个相加(转移过去的是1,当且仅当3个里有至少2个1)

这个转移和队列很像,所以可以直接用队列维护。

最后我们看f[最后那位数]是否多于还没填的1的数量就完事了。

 1 #include<bits/stdc++.h>
 2 #define pa pair<int,int>
 3 #define ll long long
 4 using namespace std;
 5 const int maxn=100010,inf=0x3f3f3f3f;
 6 
 7 ll rd(){
 8     ll x=0;char c=getchar();int neg=1;
 9     while(c<'0'||c>'9'){if(c=='-') neg=-1;c=getchar();}
10     while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
11     return x*neg;
12 }
13 
14 int N,M,num[maxn],num2[maxn],val[maxn];
15 queue<int> q;
16 
17 inline bool judge(int x){
18     int n=0;
19     for(int i=1;i<=N-M;i++) if(num2[i]>=x) n++;
20     for(int i=1;i<=N;i++) q.push(num[i]?(num[i]>=x?0:inf):1);
21     while(!q.empty()){
22         int a,b,c;
23         a=q.front();q.pop();if(q.empty()) return a<=n;
24         b=q.front();q.pop();c=q.front();q.pop();
25         q.push(min(inf,min(a+b,min(a+c,b+c))));
26     }
27 }
28 
29 int main(){
30     int i,j,k;
31     N=rd(),M=rd();
32     for(i=1;i<=M;i++){
33         j=rd(),k=rd();num[k]=val[i]=j;
34     }for(i=1;i<=N-M;i++) val[i+M]=num2[i]=rd();
35     sort(val+1,val+N+1);
36     int l=1,r=N;
37     while(l<=r){
38         int m=l+r>>1;
39         if(judge(val[m])) l=m+1;
40         else r=m-1;
41     }printf("%d\n",val[l-1]);
42     return 0;
43 }

 

转载于:https://www.cnblogs.com/Ressed/p/9623507.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值