依赖Anaconda环境安装TensorFlow库,避免采坑

本文详细介绍了如何使用Anaconda环境管理器安装特定版本的TensorFlow,包括创建Python36虚拟环境,解决版本兼容性问题,以及在Linux环境下安装过程中可能遇到的glibc库版本冲突解决方案。
摘要由CSDN通过智能技术生成

TensorFlow™ 简介:

     TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

Anaconda简介:

     Anaconda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换
Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpypandas等。
 

安装Tensorflow遇到的坑:

  ImportError: /lib64/libm.so.6: version `GLIBC_2.23' not found

  ImportError: /usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4.17' not found

   利用Anaconda自带的python3.7,安装TensorFlow由于python版本高,导致tensorflow匹配版本高,linux系统glibc库需要升级,升级了glibc-2.16、glibc-2.17 依然不兼容,放弃方法1

  解决办法 1:通过升级匹配的glibc库解决

   https://blog.csdn.net/q936889811/article/details/79947796

       解决办法2:新增python3.6.3虚拟环境,下载对应版本TensorFlow,顺利安装!

   本篇博客的采用解决办法2

Tensorflow不同版本要求与Python、CUDA及CUDNN版本对应关系,版本兼容性参考如下链接:

   https://blog.csdn.net/j879159541/article/details/93200718

本次安装版本:Python -- 3.6.3  Tensorflow --1.11.0  服务器信息:gcc version 4.4.7 (Red Hat 4.4.7-18) 

1.下载Anaconda版本,并进行安装

清华大学的镜像https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.3.1-Linux-x86_64.sh

2.创建Python36虚拟环境

3.在python36环境下安装tensorflow库,并进行测试~

利用豆瓣镜像能快些,避免超时报错

pip install -i https://pypi.douban.com/simple tensorflow==1.11.0

安装完成~

 

 

 

 

转载于:https://www.cnblogs.com/xjx767361314/p/11103817.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值