darknet框架_深度学习之目标检测系列(3) - DarkNet环境搭建

本文详细介绍了在Ubuntu 18.04上搭建DarkNet深度学习框架的过程,包括所需的硬件配置,如i7 7820X CPU、RTX 2080Ti显卡等,以及软件环境,如cuda 10.0、cudnn 7.4.2、opencv 3.4.4等。通过修改Makefile启用GPU、CUDNN、OPENCV支持,并使用make命令编译源码,最终验证安装成功的步骤。
摘要由CSDN通过智能技术生成

硬件配置 (于2019-01购买)

  • CPU: 英特尔(intel) i7 7820X 酷睿八核16线程
  • 主板: 华硕 (ASUS) PRIME X299-DELUXE II
  • 内存: 金士顿(Kingston)DDR4 3000 16G * 2
  • 显卡:技嘉(GIGABYTE)GeForce RTX 2080Ti * 2
  • SSD: 英特尔(intel)760P 512G
  • 硬盘: 西部数据红 4TB
  • 电源: 航嘉磐石1800w
  • 机箱: 美商海盗船 AIR540
  • 散热: 九周风神大霜塔CPU散热风扇

环境配置

  • 操作系统: ubuntu18.04
  • 运行内核: Linux version 4.18.0-15-generic (buildd@lcy01-amd64-029) (gcc version 7.3.0 (Ubuntu 7.3.0-16ubuntu3)) #16~18.04.1-Ubuntu
  • 显卡驱动版本: NVIDIA UNIX x86_64 Kernel Module 415.27
  • gcc版本: gcc version 7.3.0 (Ubuntu 7.3.0-27ubuntu1~18.04)
  • cuda toolkit版本: Cuda compilation tools, release 10.0, V10.0.130
  • cudnn版本: 7.4.2
  • opencv版本: 3.4.4
  • anaconda版本: conda 4.5.12
  • python版本: Python 3.6.4 :: Anaconda, Inc.

对应命令:

查看操作系统版本和运行内核

uname -a
cat /proc/version

查看显卡驱动版本

cat /proc/driver/nvidia/version

查看gcc版本

gcc -v

查看opencv版本

pkg-config --modversion opencv  

查看cuda版本

nvcc -V

查看anaconda版本

conda -V

查看python版本

python -V

安装DarkNet

darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,其主要特点就是容易安装,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。

克隆代码

git clone https://github.com/pjreddie/darknet.git

现在我们进入darknet目录先进行编译,由于我的机器支持GPU、CUDNN、OPENCV、OPENMP,编译前需要修改Makefile文件,分别修改设置为1如下:

GPU=1
CUDNN=1
OPENCV=1
OPENMP=1
DEBUG=0

ARCH= -gencode arch=compute_30,code=sm_30 
      -gencode arch=compute_35,code=sm_35 
      -gencode arch=compute_50,code=[sm_50,compute_50] 
      -gencode arch=compute_52,code=[sm_52,compute_52]
#      -gencode arch=compute_20,code=[sm_20,sm_21]  This one is deprecated?

# This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52

VPATH=./src/:./examples
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/

CC=gcc
CPP=g++
NVCC=nvcc
AR=ar
ARFLAGS=rcs
OPTS=-Ofast
LDFLAGS= -lm -pthread
COMMON= -Iinclude/ -Isrc/
CFLAGS=-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC

ifeq ($(OPENMP), 1)
CFLAGS+= -fopenmp
endif

ifeq ($(DEBUG), 1)
OPTS=-O0 -g
endif

CFLAGS+=$(OPTS)

ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv` -lstdc++
COMMON+= `pkg-config --cflags opencv`
endif

ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif

ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif

OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o route_layer.o upsample_layer.o box.o normalization_layer.o avgpool_layer.o layer.o local_layer.o shortcut_layer.o logistic_layer.o activation_layer.o rnn_layer.o gru_layer.o crnn_layer.o demo.o batchnorm_layer.o region_layer.o reorg_layer.o tree.o  lstm_layer.o l2norm_layer.o yolo_layer.o iseg_layer.o image_opencv.o
EXECOBJA=captcha.o lsd.o super.o art.o tag.o cifar.o go.o rnn.o segmenter.o regressor.o classifier.o coco.o yolo.o detector.o nightmare.o instance-segmenter.o darknet.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o avgpool_layer_kernels.o
endif

EXECOBJ = $(addprefix $(OBJDIR), $(EXECOBJA))
OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile include/darknet.h

all: obj backup results $(SLIB) $(ALIB) $(EXEC)
#all: obj  results $(SLIB) $(ALIB) $(EXEC)


$(EXEC): $(EXECOBJ) $(ALIB)
	$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(ALIB)

$(ALIB): $(OBJS)
	$(AR) $(ARFLAGS) $@ $^

$(SLIB): $(OBJS)
	$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)

$(OBJDIR)%.o: %.cpp $(DEPS)
	$(CPP) $(COMMON) $(CFLAGS) -c $< -o $@

$(OBJDIR)%.o: %.c $(DEPS)
	$(CC) $(COMMON) $(CFLAGS) -c $< -o $@

$(OBJDIR)%.o: %.cu $(DEPS)
	$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@

obj:
	mkdir -p obj
backup:
	mkdir -p backup
results:
	mkdir -p results

.PHONY: clean

clean:
	rm -rf $(OBJS) $(SLIB) $(ALIB) $(EXEC) $(EXECOBJ) $(OBJDIR)/*

使用make命令进行编译操作

make

编译完成,会在darknet目录下生成可执行文件

4c9cb6939e2bc66ba2712635d728ae00.png

界面登陆服务器执行以下测试命令,进行测试

./darknet imtest data/person.jpg

看到如下界面,darknet即安装成功

c41006c1add800f1a9135e67ddb65aa1.png

1921d2de52842f5db81d3b3a34991c09.png

链接

Darknet: Open Source Neural Networks in C​pjreddie.com
e6cb52ad129e8e9dffcc4e927b685e1a.png
pjreddie/darknet​github.com
94068000a8253d041677ba9c78c422fa.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值