Min_25筛 学习笔记

这儿只是一个简单说明/概括/总结。
原理见这:
https://www.cnblogs.com/cjyyb/p/9185093.html
https://www.cnblogs.com/zhoushuyu/p/9187319.html


首先计算\[g(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子严格大于P_j\\g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)\right]&P_j^2\le n\end{cases}\]

类似埃氏筛法,\(P(n,j)\)就是筛\(j\)次后剩下的数的\(f\)和,再加上所有质数\(p\)\(f(p)\)之和。

\(P_j^2>n\)时,这一次筛不会筛掉任何数,所以就是\(g(n,j-1)\)

\(P_j^2\leq n\)时,考虑第\(j\)次筛掉了哪些数,也就是最小质因子是\(P_j\)的那些数。因为是积性函数,所以我们直接提出一个\(P_j\)(来保证它含\(P_j\))。
要被筛掉的数在除掉一个\(P_j\)后的最小质因子一定仍大于等于\(P_j\)(否则在之前就被筛掉了),这符合\(g(\frac{n}{P_j},j-1)\)的定义。所以减掉一个\(f(P_j)g(\frac{n}{P_j},j-1)\)。但是\(g(\frac{n}{P_j},j-1)\)还包含所有质数的\(f(p)\)之和,所以再加上\(\sum_{i=1}^{j-1}f(P_i)\)

那初值呢?先把所有合数的\(f\)的计算方式看做和质数一样,以便对所有数的\(f\)值快速求个和,用它作为\(g(n,0)\)(注意这里不考虑\(1\))。这样虽然合数的\(f\)值是假的,但是\(g(n,|P|)\)还是能正确的表示所有质数\(p\)\(f(p)\)之和。


现在考虑算上合数的\(f\)值求和。令\[S(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子大于等于P_j\]

我们把\(S(n,j)\)分两部分计算,一是所有质数的贡献,二是所有合数的贡献。对于\(f(1)\)最后单独算下。

那么所有质数的贡献可以用\(g\)表示,也就是\(g(n,j)-\sum_{i=1}^{j-1}f(P_i)\)(因为最小质因子要大于等于\(P_j\),所以把那些减掉)。

对于合数,枚举这个合数的最小质因子及其次数,用\(f\)是积性函数的性质直接算:\[S(n,j)=g(n,j)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\leq n}\sum_{e=1}^{P_k^{e+1}\leq n}\left[f(P_k^e)\times S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})\right]\]

\(f(P_k^{e+1})\)\(S\)没有考虑的那部分(就是\(P_k^{e+1}\),质数的若干次幂这样的合数,而\(S(..,k+1)\)就把这些数忽略掉了)。

答案就是\(S(n,1)+f(1)\)


流程:

  1. 把所有合数看做质数,求一遍和,得到初值\(g(n,0)\)。同时预处理一个\(f(P_i)\)的前缀和。

  2. \[g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)\right]&P_j^2\le n\end{cases}\]
    计算\(g(x,|P|)\)(把第二维滚动掉)。

  3. \[S(n,j)=g(n,j)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\leq n}\sum_{e=1}^{P_k^{e+1}\leq n}\left[f(P_k^e)\times S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})\right]\]
    计算\(S(n,1)+f(1)\)

计算\(S,g\)的复杂度都是\(O(\frac{n^{\frac34}}{\log n})\)

对于其它积性函数,同\(g\)一样计算。

实现上,筛\(sqrt(n)\)内的质数这一步往往可以省略,见这里


例题:
LOJ6235 区间素数个数
BZOJ3944 Sum
LOJ6053 简单的函数

以后要做的题:
https://cmxrynp.github.io/2018/12/03/Min-25筛学习笔记/
https://blog.csdn.net/koishi_514/article/details/79485534
https://blog.csdn.net/HOWARLI/article/details/80339931

转载于:https://www.cnblogs.com/SovietPower/p/10101811.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值