hdoj4466题解

题目描述:

  相似整数三角形的周长和为N(1<=N<=5000000),问这样的三角形组合有多少种(三角形是有序的)

样例:

  N为9时,一共有6种。

  (1, 1, 1) (1, 1, 1) (1, 1, 1)
  (1, 1, 1) (2, 2, 2)
  (2, 2, 2) (1, 1, 1)
  (1, 4, 4)
  (2, 3, 4)
  (3, 3, 3)

  要解决这题,我们先给出一个0(1)的时间复杂度求周长为N的整数三角形的个数的算法。

  设三角形三边为a1,a2,a3,a1+a2+a3=N,并且a1<=a2<=a3。

  a1最小,所以1<=a1<=N/3。算法的思路是将周长为N的三角形按照最小边分类,也就是

                          

      也就是要将N/3个整数加起来就是三角形个数的和了,我们算求和公式里面的某一项时,a1是定值,比如a1等于1时三角形的个数,a1等于2时三角形的个数。。。。。

  既然a1是定值,我们可以把a1的值先给a2和a3,因为a2和a3都比a1要大,先给a2和a3分配a1的长度,还剩下N-3*a1个长度,我们可以全部给a3,也就是说满足

  a3-a2<=N-3*a1。

  由三角形的性质,两长边之差小于第三边,也就是a3-a2<a1,就是a3-a2<=a1-1。

  现在a3与a2的差要满足两个限制条件了,一个是N-3a1,一个是a1-1。,一个随着递增一个递减,所以选择分段处理,分界点是a1等于N/4的时候。

    当1<=a1<=N/4时,这时候满足a1-1<=N-3*a1,所以我们只需要关注a1-1。

    对N分为奇数和偶数谈论

    当N是奇数时

      a1为1,a3与a2的和是偶数,差也是偶数,小于1的偶数的个数是1,所以a1等于1时,三角形个数为1

      a1为3,a3与a2的和是偶数,差也是偶数,小于3的偶数的个数是2,所以a1等于3时,三角形个数为2

      a1为5,a3与a2的和是偶数,差也是偶数,小于5的偶数的个数是3,所以a1等于5时,三角形个数为3

      。。。。。。。。。。。。。。。。。。

      当a1是1,3,5,7.........时三角形的个数是1,2,3,4..................

      a1为2,a3与a2的和是奇数,差也是奇数,小于2的奇数的个数是1,所以a1等于2时,三角形个数为1

      a1为4,a3与a2的和是奇数,差也是奇数,小于4的奇数的个数是2,所以a1等于4时,三角形个数为2

      a1为6,a3与a2的和是奇数,差也是奇数,小于6的奇数的个数是3,所以a1等于6时,三角形个数为3

      。。。。。。。。。。。。。。。。。。

      当a1是2,4,6,8.........时三角形的个数是1,2,3,4....................

    两者结合起来就是1,1,2,2,3,3,4,4...............这样的数列知道个数很方便求和的

    同理,当N为偶数时,三角形个数的数列是0,1,1,2,2,3,3,..........

    解决完前半段,我们来解决后半段

    当N/4+1<=a1<=N/3时,此时N-3*a1<=a1-1,所以我们只需要关注N-3*a1。

    我们先给a2和a3分配a1的长度,还剩下N-3*a1的长度,现在要满足a2<=a3,我们可以把0,1,2,.....(N-3*a1)/2的长度分为a2,一共是(N-3*a1)/2+1种方案。

    在a1从N/4+1增加到N/3的过程中,N-3*a1是公差为3的等差数列,间隔一个看,可以看作是两个公差为6的等差数列,公差为6的等差数列除以2得到的是公差为3的等差数列,所以后半段是由两个公差为3的等差数列组成,这个求和也很好求,所以得到了0(1)时间复杂度求周长为N的整数三角形的个数。代码里面GetNumber函数就是专门来求这个的。

  现在我们来看问题,每一种方案都可以提一个基三角形出来,然后所有的三角形都是这个三角形的整数倍数。我们先求N的约数prime[],约数的个数是m

  那么方案数

  

 

  我们已9来举例子,9的约数是1,3,9

  周长为1并且三边公约数为1的三角形个数是0,0*2^8=0

  周长为3并且三边公约数为1的三角形个数是1,1*2^2=4,对应的方案是(1,1,1),(1,1,1),(1,1,1)

                                   (1,1,1),(2,2,2)

                                   (2,2,2),(1,1,1)

                                   (3,3,3)

  周长为9并且三边公约数为1的三角形个数是2,2*2^0=2,对应的方案是(1,4,4)

                                   (2,3,4)

  一共加起来是6种,这里要求基三角形的公约数是1的原因是防止计算重复。

  那么现在问题来了,周长为L并且三边公约数为1的三角形该怎么算。

  周长为L并且三边公约数为1的三角形的个数=周长为L的三角形的个数减去周长为L三边公约数不为1的个数。

  周长为L的三角形个数我们上面已经讲了,有0(1)的时间复杂度的算法。

 

  现在求周长为L三边公约数不为1的个数

  设三角形三边为a1,a2,a3,最大公约数为c,我们将三边都除以c可以得到一个周长为L/c并且三边公约数为1的三角形。

  周长为L并且三边最大公约数为c的三角形的个数与周长为L/c并且公约数为1的三角形的个数是相等的,因为两者可以互相转换。

  将c分下类,c只能是L的约数且不能为1,那儿L/c就是L的约数但不包含L。

  周长为L并且三边公约数为1的三角形的个数=周长为L的三角形的个数减去周长为L三边最大公约数为L的约数(不包含1)的三角形的个数

  所以周长为L并且三边公约数为1的三角形的个数=周长为L的三角形的个数减去周长为L的约数(不包含L)三边公约数为1的三角形的个数。

  那么现在问题就好办了,将N的约数从小到大排序,从小到大开始周长为prime[i]公约数不为1的三角形的个数,后面的计算会用到前面的计算的,也就是代码里面GetValue所做的事情。

 

  整道题的时间复杂度不大, 只与N的约数的个数相关。

#include <iostream>
#include <cstdio>
#include <math.h>
#include <stdlib.h>
using namespace std;
#define mod 1000000007
int a[50];
long long yueshu[1000];
long long value[1000];
int nyueshu;

long long GetNumber(long long N)//N可构成的三角形的个数
{
    if(N<3)
    {
        return 0;
    }
    long long result=0;
    long long n=N/4;
    if(N%2==1)
    {
        if(n%2==1)
        {
            result=(1+(n-1)/2)*(n-1)/2+(n+1)/2;
        }
        else
        {
            result=(1+n/2)*n/2;
        }
    }
    else
    {
        if(n%2==1)
        {
            result=(1+n/2)*(n/2);
        }
        else
        {
            result=(1+(n-1)/2)*((n-1)/2)+n/2;
        }
    }
    long long temp=N-N/4*3-3;
    long long k=temp/3+1;
    if(temp<0)
    {
        return result;
    }
    long long t1;
    long long t2;
    if(temp%2==0)
    {
        t1=temp/2;
        t2=t1-2;
    }
    else
    {
        t1=temp/2;
        t2=t1-1;
    }
    if(k%2==1)
    {
        result=result+(t1+t1-k/2*3)*(k/2+1)/2+(t2+t2-3*(k/2-1))*(k/2)/2+k;
    }
    else
    {
        result=result+(t1+t1-3*(k/2-1))*(k/2)/2+(t2+t2-3*(k/2-1))*(k/2)/2+k;
    }
    return result;
}

long long MOD(int N)
{
     int i;
     long long result=1;
     int n=0;
     while(N>0)
     {
         n++;
         a[n]=N%2;
         N/=2;
     }
     for(i=n;i>=1;i--)
     {
         result=(result*result)%mod;
         if(a[i]==1)
         {
             result=(result*2)%mod;
         }
     }
     return result;
}

int cmp(const void *arg1,const void* arg2)
{
    long long *t1=(long long*)arg1;
    long long *t2=(long long*)arg2;
    if(*t1<*t2)
    {
        return -1;
    }
    else
    {
        return 1;
    }
}

void GetYueshu(int N)
{
     nyueshu=0;
     int n=(int)sqrt((double)N);
     int i;
     for(i=1;i<=n;i++)
     {
         if(N%i==0)
         {
             if(N==i*i)
             {
                 nyueshu++;
                 yueshu[nyueshu]=i;
             }
             else
             {
                 nyueshu++;
                 yueshu[nyueshu]=i;
                 nyueshu++;
                 yueshu[nyueshu]=N/i;
             }
         }
     }
     qsort(yueshu+1,nyueshu,sizeof(yueshu[0]),cmp);
}

void GetValue()
{
    int i;
    int j;
    for(i=1;i<=nyueshu;i++)
    {
        value[i]=GetNumber(yueshu[i]);
    }
    for(i=1;i<=nyueshu;i++)
    {
        for(j=1;j<i;j++)
        {
            if(yueshu[i]%yueshu[j]==0)
            {
                value[i]-=value[j];
            }
        }
        value[i]=value[i]%mod;
    }
}

long long Calculate(int N)
{
     GetYueshu(N);
     GetValue();
     long long result=0;
     int i;
     for(i=1;i<=nyueshu;i++)
     {
         result=(result+value[i]*MOD(N/yueshu[i]-1))%mod;
     }
     return result;
} 

int main()
{
     int N;
     int t=1;
     while(cin>>N)
     {
         printf("Case %d: %lld\n",t++,Calculate(N));
     }
     return 0;
}

 

转载于:https://www.cnblogs.com/wanggeEzio/p/6748890.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值