判断图连通的三种方法——dfs,bfs,并查集

Description

如果无向图G每对顶点v和w都有从v到w的路径,那么称无向图G是连通的。现在给定一张无向图,判断它是否是连通的。

Input

第一行有2个整数n和m(0 < n,m < 1000000), 接下来m行每行有2个整数u,v (1<=u,v<=n)表示u和v有边连接。

Output

如果无向图是连通的输出yes,否则输出no

Sample Input
4 6
1 2
2 3
1 3
4 1
2 4
4 3

Sample Output
yes

[图的遍历算法]


题目分析:判断图是否连通,可用dfs和bfs遍历图算法,注意点数目较多,又是稀疏图的话,最后使用邻接表的方法存储。另外推荐采用的是并查集的方法。初始化时将每个节点看作一个集合,则每给出一条边即把两个集合合并。最后遍历所有点,有几个集合便有几个连通分量,若只有一个集合说明图连通。并查集方法通常情况下时间效率较高,还能判断一个图是否有回路,在kruskal算法中也可以使用。

下分别给出三种方法的代码。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;

int set[1000005];

int find(int x){

   returnx==set[x]?x:(set[x]=find(set[x]));   //递归查找集合的代表元素,含路径压缩。

}

int main()

{

   int n,m,i,x,y;

   scanf("%d%d",&n,&m);

   for(i=1;i<1000005;++i)        //初始化个集合,数组值等于小标的点为根节点。

       set[i]=i;

   for(i=0;i<m;++i){

       int a,b;

       scanf("%d%d",&a,&b);

       int fx=find(a),fy=find(b);

       set[fx]=fy;                      //合并有边相连的各个连通分量

   }

   int cnt=0;

   for(i=1;i<=n;++i)          //统计集合个数,即为连通分量个数,为一时,图联通。

       if(set[i]==i)

           ++cnt;

   if(cnt==1)
       printf("yes\n");
   else printf("no\n");

   return 0;
}
并查集

 

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>

using namespace std;
const int MAXN=1000002;
vector<int> g[MAXN];
bool vis[MAXN];
int n,m;
void dfs(int s){             //递归深搜
    vis[s]=true;
    for(int i=0;i<g[s].size();++i){
        if(vis[g[s][i]]) g[s].erase(g[s].begin()+i);//删除图中已经遍历过的点,可提高遍历速度
        else dfs(g[s][i]);
    }
}

bool judge(){                //判断是否所有点已被遍历过
    for(int i=1;i<=n;++i)
        if(!vis[i])
            return false;
    return true;
}

int main()
{
    while(~scanf("%d%d",&n,&m)){
        for(int i=1;i<=n;++i) g[i].clear();
        for(int i=0;i<m;++i){
            int a,b;
            scanf("%d%d",&a,&b);
            g[a].push_back(b);    //无向图转化为有向图,正反两次存入连接表。
            g[b].push_back(a);
        }
        memset(vis,false,sizeof(vis));
        dfs(1);
        if(judge())
            printf("yes\n");
        else printf("no\n");
    }
    return 0;
}
DFS

 

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;
const int MAXN=1000002;
vector<int> g[MAXN];
bool vis[MAXN];
int n,m;
void bfs(int s){            //用队列广搜
    queue<int> q;
    q.push(s);
    while(!q.empty()){
        int x=q.front();
        q.pop();
        vis[x]=true;
        for(int i=0;i<g[x].size();++i){
            if(vis[g[x][i]]) g[x].erase(g[x].begin()+i);//删除图中已经遍历过的点,可提高遍历速度
            else q.push(g[x][i]);
        }
    }
}

bool judge(){                   //判断是否所有点已被遍历过
    for(int i=1;i<=n;++i)
        if(!vis[i])
            return false;
    return true;
}

int main()
{
    while(~scanf("%d%d",&n,&m)){
        for(int i=1;i<=n;++i) g[i].clear();
        for(int i=0;i<m;++i){
            int a,b;
            scanf("%d%d",&a,&b);
            g[a].push_back(b);      //无向图转化为有向图,正反两次存入连接表。
            g[b].push_back(a);
        }
        memset(vis,false,sizeof(vis));
        bfs(1);
        if(judge())
            printf("yes\n");
        else printf("no\n");
    }
    return 0;
}
BFS

 

转载于:https://www.cnblogs.com/Roni-i/p/8456657.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值