1 什么是结点的连通性?
若图 G 中两个不同的结点 u 和 v 存在路径 e,则称结点 u 和结点 v 连通。
2 什么是图的连通性?
若图 G 中任意两个结点连通,则称图 G 连通。
3 怎样判断图的连通性?
判断图的连通性的常见方法有三种:DFS、BFS 和并查集。
3.1 DFS
深度优先遍历得到的是图的一个连通分量。
算法流程:
- 从某个结点 v 出发,访问结点 v,并令
vis[v] = 1
; - 查找 v 的所有邻接点 i,若结点 i 并未被访问过(
vis[i] = 0
),则从结点 i 出发,深度优先遍历图,转至步骤(1)。 - 递归结束后,遍历 vis 数组,若数组中有一个值不为 1,则说明该点未被访问,图不连通。
3.2 BFS
算法流程:
- 从某个结点 v 出发,将结点 v 放入队列 q 中;
- 队列不空时,弹出队首结点 v;
- 如果结点 v 没被访问过,查找 v 的所有邻接点 i;
- 如果结点 i 没被访问过,放入队列 q 中;
- 如果结点 i 已被访问,跳过。
- 如果结点 v 已被访问,跳过。
- 标记结点 v 已被访问(容易遗漏!!!)。
- 如果结点 v 没被访问过,查找 v 的所有邻接点 i;
- 队列为空时,遍历 vis 数组,若数组中有一个值不为 1,则说明该点未被访问,图不连通。
3.3 并查集
并查集可以简单理解为找根结点,使用 father 数组记录每个结点的根节点。
算法流程:
- 初始化每个结点的根节点为结点本身;(可使用
iota()
函数) - 从某个结点 v 开始,查找 v 的所有邻接点 i,如果结点 v 和结点 i 的根节点不同(
father[v] != father[i]
),则把两个结点的根节点设为下标较小的根节点(father[v] = father[i] = min(father[v], father[i])
)。 - 循环结束时,遍历 father 数组,若数组中有一个值不为 0,则说明该点的根节点并不是 0 号结点,图不连通。
3.4 比较
- DFS 和 BFS 都是记录结点是否已访问,而并查集是记录每个结点的根节点。
- 三种算法都需要查询当前结点的所有邻接点,因而建议以邻接表的形式存储图。
- 三种算法的时间复杂度和空间复杂度如下表所示,其中 E 为边的数目,V 为结点的数目。
4 代码
#include <iostream>
#include <numeric>
#include <queue>
#include <vector>
using namespace std;
vector<vector<int>> g;
int n;
vector<int> vis;
vector<int> father;
void dfs(int v) {
cout << v << " ";
vis[v] = 1;
for (int i = 0; i < g[v].size(); i++) {
if (!vis[g[v][i]]) {
dfs(g[v][i]);
}
}
}
void bfs() {
queue<int> q;
q.push(0);
while (!q.empty()) {
int v = q.front();
cout << v << " ";
q.pop();
if (!vis[v]) {
for (int i = 0; i < g[v].size(); i++) {
if (!vis[g[v][i]]) {
q.push(g[v][i]);
}
}
}
vis[v] = 1;
}
}
int Find(int x) {
int a = x;
while (x != father[x]) {
x = father[x];
}
while (a != father[a]) {
int z = a;
a = father[a];
father[a] = x;
}
return x;
}
void Union(int a, int b) {
int fA = Find(a);
int fB = Find(b);
father[a] = father[b] = min(fA, fB);
}
int main() {
n = 6;
g = vector<vector<int>>(n, vector<int>());
// 插入 6 条边(双向)
g[0].push_back(1);
g[0].push_back(2);
g[0].push_back(5);
g[1].push_back(0);
g[2].push_back(0);
g[2].push_back(3);
g[3].push_back(2);
g[3].push_back(4);
g[3].push_back(5);
g[4].push_back(3);
g[5].push_back(0);
g[5].push_back(3);
// DFS
vis = vector<int>(n, 0);
dfs(0);
cout << endl;
//0 1 2 3 4 5
// BFS
vis = vector<int>(n, 0);
bfs();
cout << endl;
//0 1 2 5 3 3 4
// Union-Find Set
father = vector<int>(n);
iota(father.begin(), father.end(), 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < g[i].size(); j++) {
if (father[i] != father[g[i][j]]) {
cout << i << " " << g[i][j] << endl;
Union(i, g[i][j]);
}
}
}
//0 1
//0 2
//0 5
//2 3
//3 4
// 可通过求和判断数组内所有元素是否都为 0:
cout << (accumulate(father.begin(), father.end(), 0) == 0) << endl; //1
return 0;
}
References
- 无向图连通性判断的五种方法(BFS、DFS、Union-find、Warshell、Tarjan)