最大子序和(单调队列-动态规划)

描述

输入一个长度为n的整数序列,从中找出一段不超过m的连续子序列,使得整个序列的和最大。

例如 1,-3,5,1,-2,3

当m=4时,S=5+1-2+3=7
当m=2或m=3时,S=5+1=6

输入格式

第一行两个数n,m(n,m<=300000)
第二行有n个数,要求在n个数找到最大子序和

输出格式

一个数,数出他们的最大子序和

样例输入

6 4
1 -3 5 1 -2 3

样例输出

7

分析:

  • 看到序列和,首先用sum来存放前缀和
  • 对于某一个i,我们要找到一个j(i-j<=m),使得sum[i]-sum[j]最大。
  • 假设如果有j1<j2,而且sum[j1]>sum[j2],那么j1可以直接抛弃,也就是在这个j的序列里,必须是单调递增的,所以我们可以用一个单调队列来维护这一关系
int n,m;
int sum[300001];
int qu[300001];

int main() 
{
    cin>>n>>m;
    sum[0] = 0;
    for(int i=1;i<=n;i++)
    {
        int a;
        scanf("%d",&a);
        sum[i] = sum[i-1]+a;
    }
    int ans = -inf;
    int l=0,r=0;
    qu[1] = 0;
    for(int i=1;i<=n;i++)
    {
        while(l<r&&i-qu[l+1]>m)l++;
        ans = max(ans,sum[i]-sum[qu[l+1]]);
        while(l<r&&sum[i]<=sum[qu[r]])
            r--;
        qu[++r] = i;
    }
    cout<<ans<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/1625--H/p/9475807.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
单调队列优化是一种常用的优化技巧,用于加速动态规划的求解过程。它主要应用于一类具有状态转移函数具有单调性的动态规划问题。 在使用动态规划求解问题时,通常会遇到一个状态转移函数,该函数具有单调性。也就是说,如果状态i的最优解比状态j的最优解好,且i在j之前,那么在求解状态j时,状态i不会对结果产生影响。 单调队列优化的核心思想是维护一个递增或递减的队列,用于记录可能成为最优解的状态。在状态转移过程中,我们只需要考虑队列中满足单调性要求的状态。 具体步骤如下: 1. 定义一个队列,用于存储可能成为最优解的状态的索引。 2. 初始化队列为空。 3. 从左到右遍历状态,并依次进行如下操作: - 如果队列不为空且队首元素已经不在有效范围内(根据题目要求定义),则将队首元素出队。 - 如果队列不为空,则当前状态与队尾元素进行比较,如果当前状态的最优解不如队尾元素的最优解好,则将队尾元素出队,直到队列为空或者当前状态的最优解比队尾元素的最优解好为止。 - 将当前状态的索引入队。 4. 根据题目要求,计算每个状态的最优解。 通过单调队列优化,可以减少状态的遍历次数,从而提高动态规划的效率。但需要注意的是,单调队列优化并不适用于所有的动态规划问题,只适用于具有单调性的状态转移函数。在使用时需要仔细分析问题的性质和要求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值