单词游戏
题目描述
来自 ICPC CERC 1999/2000,有改动。
有 N 个盘子,每个盘子上写着一个仅由小写字母组成的英文单词。你需要给这些盘子安排一个合适的顺序,使得相邻两个盘子中,前一个盘子上单词的末字母等于后一个盘子上单词的首字母。请你编写一个程序,判断是否能达到这一要求。如果能,请给出一个合适的顺序。
输入格式
多组数据。第一行给出数据组数T,每组数据第一行给出盘子数量 N,接下去 N 行给出小写字母字符串,一种字符串可能出现多次。
输出格式
若存在一组合法解输出Ordering is possible.
,否则输出The door cannot be opened.
。
样例
样例输入
3
2
acm
ibm
3
acm
malform
mouse
2
ok
ok
样例输出
The door cannot be opened.
Ordering is possible.
The door cannot be opened.
数据范围与提示
1≤N≤10^5,∣S∣≤1000
It's a good problem,这是一道判断有无欧拉路的题,欧拉路及欧拉回路的题码量不大,下面我来简述一下这道题
首先,我们看到首尾相连,可以想到向首到尾连一条边
即若单词为handsomeboy,则从h连向y即可,这一条路是什么意思呢?这说明选一个单词,前一个单词要么不选要么就选一首为结尾的单词,尾亦然
连完边后,题目就变成了求原图中是否有欧拉路径
欧拉回路亦可,例如:ab,ba,这就是一个欧拉回路,但是由于一条边可以不走,所以也可行
判断是否为欧拉路径的方法: 1.原图中只有一个入度比出度多一的点和一个入度比出度少一的点 2.原图是连通图
然后就可以AC了
上代码
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int in[30],out[30],t,n,sum,tot=-1,fir[30],nxt[200005],to[200005],firs[30];
char a[100500];
bool check(){
int zlk=0,wyx=0;
rep(i,0,25){
if(abs(in[i]-out[i])>1) return 0;
if(in[i]-out[i]==1) ++zlk;
else if(out[i]-in[i]==1) ++wyx;
}
if(zlk==1 && wyx==1) return 1;
if(!zlk && !wyx) return 1;
return 0;
}
void ade(int u,int v){
to[++tot]=v;
nxt[tot]=fir[u];
fir[u]=tot;
}
void euler(int x){
while(fir[x]){
int k=fir[x];
fir[x]=nxt[k];
euler(to[k]);
++sum;
}
}
int main(){
//freopen("1.txt","r",stdin);
// freopen("1.out","w",stdout);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(fir,0,sizeof(fir)); tot=0;
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
rep(i,1,n){
scanf("%s",a);
in[a[strlen(a)-1]-'a']++;
out[a[0]-'a']++;
ade(a[0]-'a',a[strlen(a)-1]-'a');
}
rep(i,0,25) firs[i]=fir[i];
if(!check()) puts("The door cannot be opened.");
else{
rep(i,0,25){
sum=0;
if(fir[i]!=-1){
euler(i);
if(sum==n){
sum=-1;
puts("Ordering is possible.");
break;
}
}
rep(j,0,25) fir[j]=firs[j];
}
if(sum!=-1) puts("The door cannot be opened.");
}
}
return 0;
}