contourf参数 python_Python可视化二维高斯分布

本文介绍了如何使用Python的matplotlib库来可视化二维高斯分布,包括plt.contourf()、plt.imshow()和plt.pcolormesh()函数的用法。通过示例,展示了如何创建Contour Plot、Filled Contour以及平滑的Filled Contour,并讨论了如何结合Contour和Filled Contour来展示数据。最后,展示了二维高斯分布的绘制过程,为理解行人运动轨迹概率分布提供帮助。
摘要由CSDN通过智能技术生成

Social LSTM论文中有一张展示行人运动轨迹概率分布的效果图,今天抽空研究下如何用Python可视化二维高斯分布(Gauss Distribution)。

b35117ff72e7853a2736b49df4d03bf5.png

可视化二维高斯分布(Gauss Distribution)本质上是以2D方式展示3D数据(第三维是概率密度),Python中四个matplotlib函数(plt.contour()、plt.contourf()、plt.imshow()、plt.pcolormesh())可以帮助我们完成这一目标。

1. 简单的示例

先引入必要的python依赖文件。

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np

1.1 目标函数

目标函数将平面坐标(x,y)映射为z值输出。

def f(x, y):
return np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

1.2 Contour Plot

plt.contour()函数有三个参数:grid of x values, grid of y values 和 grid of z values, 其中,x和y表示在plot上的位置,z表示Contour Levels。一般使用np.meshgrid()函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值