SCUT - 114 - 作业之数学篇 - 杜教筛

https://scut.online/p/114

\(A(n)=\sum\limits_{i=1}^{n} \frac{lcm(i,n)}{gcd(i,n)}\)
\(=\sum\limits_{i=1}^{n} \frac{in}{gcd^2(i,n)}\)

枚举g:
\(A(n)=n\sum\limits_{g|n}\frac{1}{g^2} \sum\limits_{i=1}^{n} i [gcd(i,n)==g]\)

最内层除以g:
\(A(n)=n\sum\limits_{g|n}\frac{1}{g} \sum\limits_{i=1}^{\frac{n}{g}} i [gcd(i,\frac{n}{g})==1]\)

考虑里面的:
\(B(n)=\sum\limits_{i=1}^{n} i [gcd(i,n)==1]\)

显然:
\(B(n)=\frac{1}{2}n([n==1]+\varphi(n))\)

代回 \(A(n)\) 里面:
\(A(n)=\sum\limits_{g|n}\frac{n}{g} B(\frac{n}{g})\)
\(=\sum\limits_{g|n} g B(g)\)
\(=\frac{1}{2}(1+\sum\limits_{g|n} g^2 \varphi(g))\)

代回 \(S(n)\) 里面:
$S(n)=\sum\limits_{i=1}^{n} A(i) $
\(= \sum\limits_{i=1}^{n} \frac{1}{2}(1+\sum\limits_{g|i} g^2 \varphi(g))\)
\(= \frac{n}{2}+\frac{1}{2}\sum\limits_{i=1}^{n}\sum\limits_{g|i} g^2 \varphi(g)\)

记:
\(C(n)=\sum\limits_{i=1}^{n}\sum\limits_{g|i} g^2 \varphi(g)\)

显然:
\(C(n)=\sum\limits_{d=1}^{n}d^2 \varphi(d) \lfloor\frac{n}{d}\rfloor\)

后面是一个分块,前面是个杜教筛。然后我们召唤鹏哥就可以通过这道题了。

转化为快速求 $\sum\limits_{i=1}^{n} i^2 \varphi(i) $,卷一个id平方然后查鹏哥的cheatsheet过了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int mod=1e9+7;
const int inv2=(mod+1)>>1;
const int MAXN=4e6;

int pri[MAXN+1];
int &pritop=pri[0];
ll B[MAXN+1];
ll PrefixB[MAXN+1];
int pk[MAXN+1];

void sieve(int n=MAXN) {
    pk[1]=1;
    B[1]=1;
    for(int i=2; i<=n; i++) {
        if(!pri[i]) {
            pri[++pritop]=i;
            pk[i]=i;
            ll tmp=1ll*i*i;
            //.
            if(tmp>=mod)
                tmp%=mod;
            B[i]=tmp*(i-1);
            if(B[i]>=mod)
                B[i]%=mod;
            //.
        }
        for(int j=1; j<=pritop; j++) {
            int &p=pri[j];
            int t=i*p;
            //.
            if(t>n)
                break;
            pri[t]=1;
            if(i%p) {
                pk[t]=p;
                B[t]=B[i]*B[p];
                if(B[t]>=mod)
                    B[t]%=mod;
                //.
            } else {
                pk[t]=pk[i]*p;
                if(pk[t]==t) {
                    ll tmp=1ll*t*t;
                    if(tmp>=mod)
                        tmp%=mod;
                    B[t]=tmp*(t-i);

                    if(B[t]>=mod)
                        B[t]%=mod;
                    //.
                } else {
                    B[t]=B[t/pk[t]]*B[pk[t]];
                    if(B[t]>=mod)
                        B[t]%=mod;
                }
                break;
            }
        }
    }
    for(int i=1; i<=n; i++) {
        PrefixB[i]=PrefixB[i-1]+B[i];
        if(PrefixB[i]>=mod)
            PrefixB[i]-=mod;
    }
}

inline int phi(int n) {
    int res=n;
    for(int i=1; i<=pritop&&pri[i]*pri[i]<=n; i++) {
        if(n%pri[i]==0) {
            res-=res/pri[i];
            while(n%pri[i]==0)
                n/=pri[i];
        }
        if(n==1)
            return res;
    }
    res-=res/n;
    return res;
    //.
}

inline ll qpow(ll x,int n) {
    ll res=1;
    while(n) {
        if(n&1) {
            res*=x;
            if(res>=mod)
                res%=mod;
        }
        x*=x;
        if(x>=mod)
            x%=mod;
        n>>=1;
    }
    return res;
}

int inv4=qpow(4,mod-2);
int inv6=qpow(6,mod-2);

inline ll s2(ll n) {
    ll tmp=n*(n+1);
    if(tmp>=mod)
        tmp%=mod;
    tmp*=(n*2+1);
    if(tmp>=mod)
        tmp%=mod;
    tmp*=inv6;
    if(tmp>=mod)
        tmp%=mod;
    return tmp;
}

inline ll s3(ll n) {
    ll tmp=n*(n+1);
    if(tmp>=mod)
        tmp%=mod;
    tmp*=tmp;
    if(tmp>=mod)
        tmp%=mod;
    tmp*=inv4;
    if(tmp>=mod)
        tmp%=mod;
    return tmp;
}

unordered_map<int,ll> PB;

inline ll S(int n) {
    if(n<=MAXN)
        return PrefixB[n];
    if(PB.count(n))
        return PB[n];
    ll ret=s3(n);
    for(int l=2,r; l<=n; l=r+1) {
        int t=n/l;
        r=n/t;
        ll tmp=s2(r)-s2(l-1);
        if(tmp<0)
            tmp+=mod;
        tmp*=S(t);
        if(tmp>=mod)
            tmp%=mod;
        ret-=tmp;
        if(ret<0)
            ret+=mod;
    }
    return PB[n]=ret;
}

inline ll Prefix(int l,int r) {
    l--;
    ll PL=S(l);
    ll PR=S(r);
    ll res=PR-PL;
    if(res<0)
        res+=mod;
    return res;
}

inline ll P(int n) {
    ll res=0;
    for(int l=1,r; l<=n; l=r+1) {
        int t=n/l;
        r=n/t;
        ll tmp=1ll*t*Prefix(l,r);
        if(tmp>=mod)
            tmp%=mod;
        res+=tmp;
        if(res>=mod)
            res-=mod;
    }
    return res;
}

inline ll Ans(int n) {
    ll res=(1ll*n*inv2)%mod;
    res+=(P(n)*inv2)%mod;
    return res%mod;
}

int main() {
#ifdef Yinku
    freopen("Yinku.in","r",stdin);
#endif // Yinku
    sieve();
    int n;
    while(~scanf("%d",&n)) {
        printf("%lld\n",Ans(n));
    }
    return 0;
}

转载于:https://www.cnblogs.com/Yinku/p/11001111.html

使用优化算法,以优化VMD算法的惩罚因子惩罚因子 (α) 和分解层数 (K)。 1、将量子粒子群优化(QPSO)算法与变分模态分解(VMD)算法结合 VMD算法背景: VMD算法是一种自适应信号分解算法,主要用于分解信号为不同频率带宽的模态。 VMD的关键参数包括: 惩罚因子 α:控制带宽的限制。 分解层数 K:决定分解出的模态数。 QPSO算法背景: 量子粒子群优化(QPSO)是一种基于粒子群优化(PSO)的一种改进算法,通过量子行为模型增强全局搜索能力。 QPSO通过粒子的量子行为使其在搜索空间中不受位置限制,从而提高算法的收敛速度与全局优化能力。 任务: 使用QPSO优化VMD中的惩罚因子 α 和分解层数 K,以获得信号分解的最佳效果。 计划: 定义适应度函数:适应度函数根据VMD分解的效果来定义,通常使用重构信号的误差(例如均方误差、交叉熵等)来衡量分解的质量。 初始化QPSO粒子:定义粒子的位置和速度,表示 α 和 K 两个参数。初始化时需要在一个合理的范围内为每个粒子分配初始位置。 执行VMD分解:对每一组 α 和 K 参数,运行VMD算法分解信号。 更新QPSO粒子:使用QPSO算法更新粒子的状态,根据适应度函数调整粒子的搜索方向和位置。 迭代求解:重复QPSO的粒子更新步骤,直到满足终止条件(如适应度函数达到设定阈值,或最大迭代次数)。 输出优化结果:最终,QPSO算法会返回一个优化的 α 和 K,从而使VMD分解效果最佳。 2、将极光粒子(PLO)算法与变分模态分解(VMD)算法结合 PLO的优点与适用性 强大的全局搜索能力:PLO通过模拟极光粒子的运动,能够更高效地探索复杂的多峰优化问题,避免陷入局部最优。 鲁棒性强:PLO在面对高维、多模态问题时有较好的适应性,因此适合海上风电时间序列这种非线性、多噪声的数据。 应用场景:PLO适合用于优化VMD参数(α 和 K),并将其用于风电时间序列的预测任务。 进一步优化的建议 a. 实现更细致的PLO更新策略,优化极光粒子的运动模型。 b. 将PLO优化后的VMD应用于真实的海上风电数据,结合LSTM或XGBoost等模型进行风电功率预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值