[Codeforces]856E - Satellites

本文介绍了解决CF856E问题的一种方法,利用线段树和堆实现区间操作,包括区间相交判断及区间包含判断。通过将卫星问题转化为区间问题,并给出两种实现方式:一种为O(nlog^2n)的CDQ分治,另一种为优化后的O(nlogn)线段树实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

做法:每个卫星分别用连到左边圆与x轴交点的线的斜率和连到右边交点的线旋转90度的斜率可以表示成一个区间,问题转化成支持加/删区间和询问其中两个区间是否有交以及它们的交是否被其他区间包含。我一开始写了个O(nlog^2n)的cdq分治,判这个交的部分被包含次数是否超过2,后来dalao告诉我,直接线段树维护每个左端点对应的右端点最远在哪,每个左端点开一个堆支持删除就好了,询问的时候删掉两个区间后面再加回来,这样时间复杂度为O(nlogn)。还有为避免炸精度,直接用向量表示斜率。另外两个程序里都有许多卡常(cdq还是卡常过的),跑的飞快。

cdq:

#include<cstdio>
#include<algorithm>
using namespace std;
char B[1<<26],*S=B;
inline int read()
{
    int x,f=1;char c;
    while((c=*S++)<'0'||c>'9')if(c=='-')f=0;
    for(x=c-'0';(c=*S++)>='0'&&c<='9';)x=x*10+c-'0';
    return f?x:-x;
}
#define MN 500000
#define N 524288
struct vec
{
    int x,y;
    friend bool operator<(const vec&a,const vec&b){return 1LL*a.x*b.y<1LL*a.y*b.x;}
    friend bool operator==(const vec&a,const vec&b){return 1LL*a.x*b.y==1LL*a.y*b.x;}
};
vec rot(const vec&a){return (vec){a.y,-a.x};}
struct work{int t,z;vec x,y;}w[MN+5],q[MN+5];
bool cmp(const work&a,const work&b){return a.x==b.x?a.t>b.t:a.x<b.x;}
vec l[MN+5],r[MN+5],c[MN+5];
int cnt,ans[MN+5],t[N*2+5],qn,sa[MN+5],sb[MN+5];
void add(int k,int x){for(k+=N;k;k>>=1)t[k]+=x;}
int query(int l,int r)
{
    int res=0;
    for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1)
    {
        if(~l&1)res+=t[l+1];
        if( r&1)res+=t[r-1];
    }
    return res;
}
void solve(int l,int r)
{
    int mid=l+r>>1,i;
    if(l<r)solve(l,mid),solve(mid+1,r);
    if(sa[mid]==sa[l-1]||sb[r]==sb[mid])return;
    for(qn=0,i=l;i<=mid;++i)if(w[i].t>0)q[++qn]=w[i];
    for(;i<=r;++i)if(!w[i].t)q[++qn]=w[i];
    sort(q+1,q+qn+1,cmp);
    for(i=1;i<=qn;++i)
        if(q[i].t)add(lower_bound(c+1,c+cnt+1,q[i].y)-c,q[i].z);
        else ans[q[i].z]+=query(lower_bound(c+1,c+cnt+1,q[i].y)-c,cnt);
    for(i=1;i<=qn;++i)if(q[i].t)add(lower_bound(c+1,c+cnt+1,q[i].y)-c,-q[i].z);
}
int main()
{
    B[fread(B,1,1<<26,stdin)]=0;
    int R=read(),n=read(),i,t,x,y;
    for(i=1;i<=n;++i)
    {
        t=read();x=read();sa[i]=sa[i-1];sb[i]=sb[i-1];
        if(t==1)
        {
            l[++cnt]=(vec){x+R,y=read()};
            c[cnt]=r[cnt]=(vec){x-R,y};
            w[i]=(work){1,1,l[cnt],r[cnt]},++sa[i];
        }
        if(t==2)w[i]=(work){1,-1,l[x],r[x]},++sa[i];
        if(t==3)
        {
            if(l[y=read()]<l[x])x^=y^=x^=y;
            if(rot(r[x])<l[y])w[i]=(work){-1,0,0,0},ans[i]=3;
            else w[i]=(work){0,i,l[y],r[x]<r[y]?r[x]:r[y]},++sb[i];
        }
    }
    sort(c+1,c+cnt+1);cnt=unique(c+1,c+cnt+1)-c-1;solve(1,n);
    for(i=1;i<=n;++i)if(ans[i])puts(ans[i]>2?"NO":"YES");
}
View Code

线段树:

#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
inline int read()
{
    int x,f=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')f=0;
    for(x=c-'0';(c=getchar())>='0'&&c<='9';)x=x*10+c-'0';
    return f?x:-x;
}
#define MN 500000
#define N 524288
#define mp(x,y) make_pair(x,y)
struct vec
{
    int x,y,z;
    friend bool operator<(const vec&a,const vec&b)
        {return a.z||(!b.z&&1LL*a.x*b.y<1LL*a.y*b.x);}
    friend bool operator==(const vec&a,const vec&b){return 1LL*a.x*b.y==1LL*a.y*b.x;}
}l[MN+5],r[MN+5],c[MN+5],T[N*2+5];
priority_queue< pair<vec,int> > p[MN+5];
int cnt,u[MN+5],t[MN+5],x[MN+5],y[MN+5],lp[MN+5];
void change(int k,const vec&x){for(T[k+=N]=x;k>>=1;)T[k]=max(T[k<<1],T[k<<1|1]);}
vec query(int l,int r)
{
    vec res=(vec){0,0,1};
    for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1)
    {
        if(~l&1)res=max(res,T[l+1]);
        if( r&1)res=max(res,T[r-1]);
    }
    return res;
}
void ins(int x)
{
    int k=lp[x]?lp[x]:lp[x]=lower_bound(c+1,c+cnt+1,l[x])-c;
    u[x]=0;p[k].push(mp(r[x],x));
    if(p[k].top()==mp(r[x],x))change(k,r[x]);
}
void del(int x)
{
    int k=lp[x]?lp[x]:lp[x]=lower_bound(c+1,c+cnt+1,l[x])-c,s=0;
    for(u[x]=1;u[p[k].top().second];++s)p[k].pop();
    if(s)change(k,p[k].top().first);
}
int main()
{
    int R=read(),n=read(),i,k;
    for(i=1;i<=n;++i)
    {
        t[i]=read();x[i]=read();if(t[i]!=2)y[i]=read();
        if(t[i]==1)++cnt,c[cnt]=l[cnt]=(vec){x[i]+R,y[i],0},r[cnt]=(vec){y[i],R-x[i],0},x[i]=cnt;
    }
    sort(c+1,c+cnt+1);cnt=unique(c+1,c+cnt+1)-c-1;
    for(i=1;i<2*N;++i)T[i]=(vec){0,0,1};
    for(i=1;i<=cnt;++i)p[i].push(mp(T[1],0));
    for(i=1;i<=n;++i)
    {
        if(t[i]==1)ins(x[i]);
        if(t[i]==2)del(x[i]);
        if(t[i]==3)
        {
            if(l[y[i]]<l[x[i]])swap(x[i],y[i]);
            if(r[x[i]]<l[y[i]]){puts("NO");continue;}
            k=lp[y[i]]?lp[y[i]]:lp[y[i]]=lower_bound(c+1,c+cnt+1,l[y[i]])-c;
            del(x[i]);del(y[i]);
            puts(query(1,k)<(r[x[i]]<r[y[i]]?r[x[i]]:r[y[i]])?"YES":"NO");
            ins(x[i]);ins(y[i]);
        }
    }
}

 

转载于:https://www.cnblogs.com/ditoly/p/CF856E.html

内容概要:《2024年中国物联网产业创新白皮书》由深圳市物联网产业协会与AIoT星图研究院联合编制,汇集了全国30多个省市物联网组织的智慧。白皮书系统梳理了中国物联网产业的发展历程、现状及未来趋势,涵盖了物联网的概念、产业结构、市场规模、投融资情况、面临的问题与机遇。书中详细分析了感知层、传输层、平台层及应用层的关键技术,探讨了智慧城市、智能工业、车联网、智慧医疗等九大产业物联网应用领域,以及消费物联网的发展特征与热门单品。此外,白皮书还关注了物联网数据安全、法规遵从、人才短缺等挑战,并提出了相应的解决方案。 适用人群:物联网从业者、企业决策者、政策制定者及相关研究机构。 使用场景及目标:①帮助从业者深入了解物联网产业的现状和发展趋势;②为企业决策者提供战略规划依据;③为政策制定者提供政策支持和法规制定参考;④为研究机构提供详尽的数据和案例支持。 其他说明:白皮书不仅限于技术科普,更从宏观角度结合市场情况,多维度讨论了物联网产业生态,旨在为物联网企业、从业者找到最适合的技术应用场景,促进产业健康发展。报告还特别鸣谢了参与市场调研的企业,感谢他们提供的宝贵行业信息。由于时间和资源的限制,报告可能存在信息不充分之处,欢迎各界人士提出宝贵意见。
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值