做法:每个卫星分别用连到左边圆与x轴交点的线的斜率和连到右边交点的线旋转90度的斜率可以表示成一个区间,问题转化成支持加/删区间和询问其中两个区间是否有交以及它们的交是否被其他区间包含。我一开始写了个O(nlog^2n)的cdq分治,判这个交的部分被包含次数是否超过2,后来dalao告诉我,直接线段树维护每个左端点对应的右端点最远在哪,每个左端点开一个堆支持删除就好了,询问的时候删掉两个区间后面再加回来,这样时间复杂度为O(nlogn)。还有为避免炸精度,直接用向量表示斜率。另外两个程序里都有许多卡常(cdq还是卡常过的),跑的飞快。
cdq:
#include<cstdio> #include<algorithm> using namespace std; char B[1<<26],*S=B; inline int read() { int x,f=1;char c; while((c=*S++)<'0'||c>'9')if(c=='-')f=0; for(x=c-'0';(c=*S++)>='0'&&c<='9';)x=x*10+c-'0'; return f?x:-x; } #define MN 500000 #define N 524288 struct vec { int x,y; friend bool operator<(const vec&a,const vec&b){return 1LL*a.x*b.y<1LL*a.y*b.x;} friend bool operator==(const vec&a,const vec&b){return 1LL*a.x*b.y==1LL*a.y*b.x;} }; vec rot(const vec&a){return (vec){a.y,-a.x};} struct work{int t,z;vec x,y;}w[MN+5],q[MN+5]; bool cmp(const work&a,const work&b){return a.x==b.x?a.t>b.t:a.x<b.x;} vec l[MN+5],r[MN+5],c[MN+5]; int cnt,ans[MN+5],t[N*2+5],qn,sa[MN+5],sb[MN+5]; void add(int k,int x){for(k+=N;k;k>>=1)t[k]+=x;} int query(int l,int r) { int res=0; for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1) { if(~l&1)res+=t[l+1]; if( r&1)res+=t[r-1]; } return res; } void solve(int l,int r) { int mid=l+r>>1,i; if(l<r)solve(l,mid),solve(mid+1,r); if(sa[mid]==sa[l-1]||sb[r]==sb[mid])return; for(qn=0,i=l;i<=mid;++i)if(w[i].t>0)q[++qn]=w[i]; for(;i<=r;++i)if(!w[i].t)q[++qn]=w[i]; sort(q+1,q+qn+1,cmp); for(i=1;i<=qn;++i) if(q[i].t)add(lower_bound(c+1,c+cnt+1,q[i].y)-c,q[i].z); else ans[q[i].z]+=query(lower_bound(c+1,c+cnt+1,q[i].y)-c,cnt); for(i=1;i<=qn;++i)if(q[i].t)add(lower_bound(c+1,c+cnt+1,q[i].y)-c,-q[i].z); } int main() { B[fread(B,1,1<<26,stdin)]=0; int R=read(),n=read(),i,t,x,y; for(i=1;i<=n;++i) { t=read();x=read();sa[i]=sa[i-1];sb[i]=sb[i-1]; if(t==1) { l[++cnt]=(vec){x+R,y=read()}; c[cnt]=r[cnt]=(vec){x-R,y}; w[i]=(work){1,1,l[cnt],r[cnt]},++sa[i]; } if(t==2)w[i]=(work){1,-1,l[x],r[x]},++sa[i]; if(t==3) { if(l[y=read()]<l[x])x^=y^=x^=y; if(rot(r[x])<l[y])w[i]=(work){-1,0,0,0},ans[i]=3; else w[i]=(work){0,i,l[y],r[x]<r[y]?r[x]:r[y]},++sb[i]; } } sort(c+1,c+cnt+1);cnt=unique(c+1,c+cnt+1)-c-1;solve(1,n); for(i=1;i<=n;++i)if(ans[i])puts(ans[i]>2?"NO":"YES"); }
线段树:
#include<cstdio> #include<algorithm> #include<queue> using namespace std; inline int read() { int x,f=1;char c; while((c=getchar())<'0'||c>'9')if(c=='-')f=0; for(x=c-'0';(c=getchar())>='0'&&c<='9';)x=x*10+c-'0'; return f?x:-x; } #define MN 500000 #define N 524288 #define mp(x,y) make_pair(x,y) struct vec { int x,y,z; friend bool operator<(const vec&a,const vec&b) {return a.z||(!b.z&&1LL*a.x*b.y<1LL*a.y*b.x);} friend bool operator==(const vec&a,const vec&b){return 1LL*a.x*b.y==1LL*a.y*b.x;} }l[MN+5],r[MN+5],c[MN+5],T[N*2+5]; priority_queue< pair<vec,int> > p[MN+5]; int cnt,u[MN+5],t[MN+5],x[MN+5],y[MN+5],lp[MN+5]; void change(int k,const vec&x){for(T[k+=N]=x;k>>=1;)T[k]=max(T[k<<1],T[k<<1|1]);} vec query(int l,int r) { vec res=(vec){0,0,1}; for(l+=N-1,r+=N+1;l^r^1;l>>=1,r>>=1) { if(~l&1)res=max(res,T[l+1]); if( r&1)res=max(res,T[r-1]); } return res; } void ins(int x) { int k=lp[x]?lp[x]:lp[x]=lower_bound(c+1,c+cnt+1,l[x])-c; u[x]=0;p[k].push(mp(r[x],x)); if(p[k].top()==mp(r[x],x))change(k,r[x]); } void del(int x) { int k=lp[x]?lp[x]:lp[x]=lower_bound(c+1,c+cnt+1,l[x])-c,s=0; for(u[x]=1;u[p[k].top().second];++s)p[k].pop(); if(s)change(k,p[k].top().first); } int main() { int R=read(),n=read(),i,k; for(i=1;i<=n;++i) { t[i]=read();x[i]=read();if(t[i]!=2)y[i]=read(); if(t[i]==1)++cnt,c[cnt]=l[cnt]=(vec){x[i]+R,y[i],0},r[cnt]=(vec){y[i],R-x[i],0},x[i]=cnt; } sort(c+1,c+cnt+1);cnt=unique(c+1,c+cnt+1)-c-1; for(i=1;i<2*N;++i)T[i]=(vec){0,0,1}; for(i=1;i<=cnt;++i)p[i].push(mp(T[1],0)); for(i=1;i<=n;++i) { if(t[i]==1)ins(x[i]); if(t[i]==2)del(x[i]); if(t[i]==3) { if(l[y[i]]<l[x[i]])swap(x[i],y[i]); if(r[x[i]]<l[y[i]]){puts("NO");continue;} k=lp[y[i]]?lp[y[i]]:lp[y[i]]=lower_bound(c+1,c+cnt+1,l[y[i]])-c; del(x[i]);del(y[i]); puts(query(1,k)<(r[x[i]]<r[y[i]]?r[x[i]]:r[y[i]])?"YES":"NO"); ins(x[i]);ins(y[i]); } } }