Time travel HDU - 4418(高斯消元)


Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to finish a mission by traveling through time with the Time machine. The Time machine can take agent K to some point (0 to n-1) on the timeline and when he gets to the end of the time line he will come back (For example, there are 4 time points, agent K will go in this way 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ...). But when agent K gets into the Time machine he finds it has broken, which make the Time machine can't stop (Damn it!). Fortunately, the time machine may get recovery and stop for a few minutes when agent K arrives at a time point, if the time point he just arrive is his destination, he'll go and finish his mission, or the Time machine will break again. The Time machine has probability Pk% to recover after passing k time points and k can be no more than M. We guarantee the sum of Pk is 100 (Sum(Pk) (1 <= k <= M)==100). Now we know agent K will appear at the point X(D is the direction of the Time machine: 0 represents going from the start of the timeline to the end, on the contrary 1 represents going from the end. If x is the start or the end point of the time line D will be -1. Agent K want to know the expectation of the amount of the time point he need to pass before he arrive at the point Y to finish his mission. 
If finishing his mission is impossible output "Impossible !" (no quotes )instead. 

InputThere is an integer T (T <= 20) indicating the cases you have to solve. The first line of each test case are five integers N, M, Y, X .D (0< N,M <= 100, 0 <=X ,Y < 100 ). The following M non-negative integers represent Pk in percentile. 
OutputFor each possible scenario, output a floating number with 2 digits after decimal point 
If finishing his mission is impossible output one line "Impossible !" 
(no quotes )instead. 
Sample Input

2
4 2 0 1 0
50 50
4 1 0 2 1
100

Sample Output

8.14
2.00

一个黑衣人在0到n-1的n个时间点里无限穿梭,他需要从 x 位置到 y 位置,时间穿梭器每传送 k 次,最多M次,就有 Pk 的概率停下一次,如果停下的位置正好是 y, 那么黑衣人到达目的地。
然后给出的 N 个点,M次传送次数,目的地y,出发地x,方向D, D为 0 时从左到右走,D为 1 时,从右往左走。
对于方向,可以把 N 个点翻倍,比如 N = 5,可以看成0 1 2 3 4 5 4 3 2 1, 假设我x = 1, D = 0,那么就是从下标 1 开始走,如果x = 1, D = 1,那么我就是从下标 2*n-2-1 开始走,并且这么走,都只要看成往右走。
然后对开始位置进行 bfs ,把可以从开始位置走的点找出来,并且对这些点标号。
然后对于列方程。令dp[i] 表示从 i 位置走出的期望。
1. i == y, dp[i] = 0.
2. i != y, dp[i] = Σ((dp[i+j] + j) * p[j])
= Σ(dp[i+j] * p[j]) + p[j] * j
即 dp[i] - Σ(dp[i+j] * p[j]) = p[j] * j
通过这个式子对可以走到的点列方程
列方程时 a[has[i]][has[v]] -= p[j]; 和 a[has[i]][has[v]] = -p[j]; 是不一样的,因为我需要对 n 取模,那么我的 v 位置可能多次走到。
然后用高斯消元求出 x[has[x]] 就可以了。
  1 /*
  2           .
  3          ';;;;;.
  4         '!;;;;;;!;`
  5        '!;|&#@|;;;;!:
  6       `;;!&####@|;;;;!:
  7      .;;;!&@$$%|!;;;;;;!'.`:::::'.
  8      '!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
  9      :!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%`    '!%&#########@$!:.
 10      ;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
 11      ;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
 12     `!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
 13     :@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
 14     ;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
 15    `!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
 16 %&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
 17 !%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
 18 ':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
 19  !@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
 20   .:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
 21   .%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
 22     !&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
 23      `%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
 24        .|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
 25            ;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
 26            |##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
 27           ;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
 28         .%##@|;;;;:::''''''''''::;!%&##$'
 29       `$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
 30     ;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
 31      .%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
 32     :@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
 33      `%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
 34      |##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
 35     :;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$:                 !@#$'
 36       |##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%:              '%%!%&;
 37       |&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||`            '%$|!%&;
 38       |@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&:           .|%;:!&%`
 39       !@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$;          `%&%!!$&:
 40       '$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##;         !$!;:!$&:
 41        |#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%'      `%$|%%;|&$'
 42         |&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&;  .:%&$!;;;:!$@!
 43         `%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
 44         !&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
 45        '%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
 46        .!%%&%'`|$;       :|$#%|@#&;%#%.
 47 */
 48 #include <map>
 49 #include <set>
 50 #include <list>
 51 #include <ctime>
 52 #include <cmath>
 53 #include <stack>
 54 #include <queue>
 55 #include <string>
 56 #include <vector>
 57 #include <cstdio>
 58 #include <bitset>
 59 #include <cstdlib>
 60 #include <cstring>
 61 #include <iostream>
 62 #include <algorithm>
 63 #define  lowbit(x)  x & (-x)
 64 #define  mes(a, b)  memset(a, b, sizeof a)
 65 #define  fi         first
 66 #define  se         second
 67 #define  pii        pair<int, int>
 68 #define  INOPEN     freopen("in.txt", "r", stdin)
 69 #define  OUTOPEN    freopen("out.txt", "w", stdout)
 70 
 71 typedef unsigned long long int ull;
 72 typedef long long int ll;
 73 const int    maxn = 2e2 + 10;
 74 const int    maxm = 1e5 + 10;
 75 const int    mod  = 1e9 + 7;
 76 const ll     INF  = 1e18 + 100;
 77 const int    inf  = 0x3f3f3f3f;
 78 const double pi   = acos(-1.0);
 79 const double eps  = 1e-9;
 80 using namespace std;
 81 
 82 int n, m;
 83 int cas, tol, T;
 84 int src, des;
 85 
 86 int has[maxn];
 87 double x[maxn];
 88 double p[maxn];
 89 double a[maxn][maxn];
 90 
 91 void init() {
 92     tol = 0;
 93     mes(a, 0);
 94     mes(x, 0);
 95     mes(p, 0);
 96     mes(has, -1);
 97 }
 98 
 99 void bfs(int src) {
100     queue<int> q;
101     while(!q.empty())
102         q.pop();
103     q.push(src);
104     has[src] = tol++;
105     while(!q.empty()) {
106         int u = q.front();
107         q.pop();
108         for(int i=1; i<=m; i++) {
109             if(fabs(p[i]) < eps)    continue;
110             int v = (u + i) % n;
111             if(has[v] == -1) {
112                 has[v] = tol++;
113                 q.push(v);
114             }
115         }
116     }
117 }
118 
119 void build() {
120     for(int i=0; i<n; i++) {
121         if(has[i] == -1)    continue;
122         double ans = 0.0;
123         a[has[i]][has[i]] = 1.0;
124         if(i == des || i == n-des) {
125             x[has[i]] = 0;
126             continue;
127         }
128         for(int j=1; j<=m; j++) {
129             int v = (i + j) % n;
130             a[has[i]][has[v]] -= p[j];
131             ans += j * p[j];
132         }
133         x[has[i]] = ans;
134     }
135 }
136 
137 int gauss(int equ, int var) {
138     int i, j, k, col, max_r;
139     for(k=0, col=0; k<equ && col<var; k++, col++) {
140         max_r = k;
141         for(i=k+1; i<equ; i++) {
142             if(fabs(a[i][col]) > fabs(a[max_r][col])) {
143                 max_r = i;
144             }
145         }
146         if(fabs(a[max_r][col] < eps))    return 0;
147         if(k != max_r) {
148             swap(a[k], a[max_r]);
149             swap(x[k], x[max_r]);
150         }
151         x[k] /= a[k][col];
152         for(j=col+1; j<var; j++) {
153             a[k][j] /= a[k][col];
154         }
155         a[k][col] = 1;
156         for(i=0; i<equ; i++) {
157             if(i != k) {
158                 x[i] -= x[k] * a[i][k];
159                 for(j=col+1; j<var; j++) {
160                     a[i][j] -= a[k][j] * a[i][col];
161                 }
162                 a[i][col] = 0;
163             }
164         }
165     }
166     return 1;
167 }
168 
169 int main() {
170     scanf("%d", &T);
171     while(T--) {
172         init();
173         int D;
174         scanf("%d%d%d%d%d", &n, &m, &des, &src, &D);
175         for(int i=1; i<=m; i++) {
176             scanf("%lf", &p[i]);
177             p[i] /= 100;
178         }
179         if(src == des) {
180             printf("0.00\n");
181             continue;
182         }
183         n = 2 * n - 2;
184         if(D == 1)
185             src = n - src;
186         bfs(src);
187         if(has[des] == -1 && has[n - des] == -1) {
188             printf("Impossible !\n");
189             continue;
190         }
191         build();
192         if(gauss(tol, tol)) {
193             printf("%.2f\n", x[has[src]]);
194         } else {
195             printf("Impossible !\n");
196         }
197     }
198     return 0;
199 }
View Code

 

转载于:https://www.cnblogs.com/Jiaaaaaaaqi/p/10106322.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>