「网络流24题」 3. 最小路径覆盖问题

「网络流24题」 3. 最小路径覆盖问题


如题,最小路径覆盖。

套路拆点,每个点i拆成xi、yi,对于每一条u->v,连xu->yv有向,然后在新图上跑匈牙利。

最大流也可以做,但匈牙利更简单。

最后遍历每个x部点,向其匹配点走,沿途标记为已访问。

已经遍历过的不再遍历。

二分图相关定理:最小路径覆盖数=点数-最大匹配数。

#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=310,MAXM=12010;
bool vis[MAXN];
int n,m,cnt,ans,head[MAXN],cx[MAXN],cy[MAXN];
struct edge
{
    int nxt,to;
}e[MAXM];
void AddEdge(int x,int y)
{
    e[++cnt].nxt=head[x];
    e[cnt].to=y;
    head[x]=cnt;
}
void AddEdges(int x,int y)
{
    AddEdge(x,y);
    AddEdge(y,x);
}
bool DFS(int x)
{
    for(int i=head[x],t;i;i=e[i].nxt)
        if(!vis[t=e[i].to])
        {
            vis[t]=1;
            if(!cy[t] || DFS(cy[t]))
            {
                cx[x]=t,cy[t]=x;
                return 1;
            }
        }
    return 0;
}
void Hungary(void)
{
    for(int i=1;i<=n;++i)
        if(!cx[i])
        {
            memset(vis,0,sizeof vis);
            ans-=DFS(i);
        }
}
void Print(int x)
{
    x+=n;
    do
        printf("%d ",x=x-n);
    while(vis[x]=1,x=cx[x]);
    printf("\n");
}
int main(int argc,char *argv[])
{
    scanf("%d %d",&n,&m);
    ans=n;
    for(int i=1,x,y;i<=m;++i)
    {
        scanf("%d %d",&x,&y);
        AddEdges(x,y+n);
    }
    Hungary();
    memset(vis,0,sizeof vis);
    for(int i=1;i<=n;++i)
        if(!vis[i])
            Print(i);
    printf("%d\n",ans);
    return 0;
}

谢谢阅读

转载于:https://www.cnblogs.com/Capella/p/8191594.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值