Discription
对于 100% 的数据, N<=50.
solution:
发现N比较小,所以我们可以花O(N^2)的代价枚举两颗树的联通块的LCA分别是哪个点,然后现在问题就变成了:选一个点必须要选它在两个树上的祖先,问如何选点可以使收益最大。
这是一个裸的 最大权闭合子图 问题, 节点连S表示选,连T表示不选,如果选x必须选y那么就连<x,y,inf>,最后的答案就是 所有正的a的和 - 这个图的最小割。
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
using namespace std;
const int maxn=55;
vector<int> g[maxn];
struct lines{
int to,flow,cap;
}l[maxn*maxn];
int t=-1,S,T,d[maxn],cur[maxn];
bool v[maxn];
inline void add(int from,int to,int cap){
l[++t]=(lines){to,0,cap},g[from].pb(t);
l[++t]=(lines){from,0,0},g[to].pb(t);
}
inline bool BFS(){
memset(v,0,sizeof(v));
queue<int> q;
q.push(S),v[S]=1,d[S]=0;
int x; lines e;
while(!q.empty()){
x=q.front(),q.pop();
for(int i=g[x].size()-1;i>=0;i--){
e=l[g[x][i]];
if(e.flow<e.cap&&!v[e.to]){
v[e.to]=1,d[e.to]=d[x]+1;
q.push(e.to);
}
}
}
return v[T];
}
int dfs(int x,int A){
if(x==T||!A) return A;
int flow=0,f,sz=g[x].size();
for(int &i=cur[x];i<sz;i++){
lines &e=l[g[x][i]];
if(d[x]==d[e.to]-1&&(f=dfs(e.to,min(A,e.cap-e.flow)))){
A-=f,flow+=f;
e.flow+=f,l[g[x][i]^1].flow-=f;
if(!A) break;
}
}
return flow;
}
inline int max_flow(){
int an=0;
while(BFS()){
memset(cur,0,sizeof(cur));
an+=dfs(S,1<<30);
}
return an;
}
vector<int> son[maxn];
int hd[maxn],ne[maxn*2];
int n,a[maxn],TO[maxn*2];
int F[2][maxn],NOW,ans;
void dfs1(int x,int fa){
F[0][x]=fa;
for(int i=son[x].size()-1,O;i>=0;i--){
O=son[x][i];
if(O==fa) continue;
dfs1(O,x);
}
}
void dfs2(int x,int fa){
F[1][x]=fa;
for(int i=hd[x];i;i=ne[i]) if(TO[i]!=fa)
dfs2(TO[i],x);
}
inline void build(){
t=-1;
for(int i=0;i<=T;i++) g[i].clear();
for(int i=1;i<=n;i++){
if(F[0][i]) add(i,F[0][i],1<<30);
if(F[1][i]) add(i,F[1][i],1<<30);
if(a[i]>0) add(S,i,a[i]);
else add(i,T,-a[i]);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",a+i);
NOW+=max(0,a[i]);
}
int uu,vv;
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv),uu++,vv++;
son[uu].pb(vv),son[vv].pb(uu);
}
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv),uu++,vv++;
TO[i]=vv,ne[i]=hd[uu],hd[uu]=i;
TO[i+n]=uu,ne[i+n]=hd[vv],hd[vv]=i+n;
}
S=0,T=n+1;
for(int i=1;i<=n;i++){
dfs1(i,0);
for(int j=1;j<=n;j++){
dfs2(i,0);
build();
ans=max(ans,NOW-max_flow());
}
}
printf("%d\n",ans);
return 0;
}