51nod 1325 两棵树的问题

题意

有两颗各含N个点的无根树,每棵树中点分别被编号为0,1,2,….,N-1;注意两棵树并不保证同构。
另外给一个N长的整数数组Score[],记录N个编号的得分,Score中的每个元素可正可负。
问题的任务是寻找 集合{0,1,2,3,4,…,N-1}的一个最优子集subset,要求满足以下条件:
1)在第一棵树中,subset中包含的编号对应的点能构成一个连通的子图;即去掉这棵树中所有subset中不包含的点后,剩下的点依然是一棵连通的树。
2)在第二棵树中,subset中包含的编号对应的点也能构成一个连通的子图;
3)使subset包含编号的总得分尽可能的大;即SUM{ Score[i] | i∈subset }能取到尽可能大的值。
输出这个subset包含编号的总分的最大值。

题解

考虑到选的集合很不确定,不好下手
加上n比较小,所以我们可以枚举一个一定要选的点
那么就变成有根树了
那么遍历两棵树,就可以得到一些依赖关系
通过依赖关系做最大权闭合子图就可以了
我因为比较傻逼,所以缩了点
最难的就是图的个数比较多。。我的变量不够用
送分的八级题啊
CODE:

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int MAX=(1<<30);
const int N=55*55*2;
int n;
int val[N];
struct qq
{
    int x,y,last;
}e[N];int num,last[N];
qq E[N];int Last[N];
qq s[N];int last1[N];
void init (int x,int y){num++;e[num].x=x;e[num].y=y;e[num].last=last[x];last[x]=num;}
void Init (int x,int y){num++;E[num].x=x;E[num].y=y;E[num].last=Last[x];Last[x]=num;}
void init1 (int x,int y){num++;s[num].x=x;s[num].y=y;s[num].last=last1[x];last1[x]=num;}
struct qt
{
    int x,y,z,last;
}o[N];int onum,olast[N];
void dfs (int x,int fa)
{
    for (int u=last[x];u!=-1;u=e[u].last)
    {
        int y=e[u].y;
        if (y==fa) continue;
        init1(y,x);
        dfs(y,x);
    }
}
void dfs1 (int x,int fa)
{
    for (int u=Last[x];u!=-1;u=E[u].last)
    {
        int y=E[u].y;
        if (y==fa) continue;
    //  printf("SB:%d %d\n",y,x);
        init1(y,x);
        dfs1(y,x);
    }
}
int dfn[N],low[N],belong[N],sta[N],id,cnt,top;
bool in[N];
int g[N];
void Dfs (int x)
{
//  printf("%d\n",x);
    low[x]=dfn[x]=++id;
    sta[++top]=x;in[x]=true;
    for (int u=last1[x];u!=-1;u=s[u].last)
    {
        int y=s[u].y;
    //  printf("YES:%d\n",y);
        if (dfn[y]==-1)
        {
            Dfs(y);
            low[x]=min(low[x],low[y]);
        }
        else if (in[y]) low[x]=min(low[x],dfn[y]);
    }
    if (low[x]==dfn[x])
    {
        cnt++;g[cnt]=0;int i;
        do
        {
            i=sta[top--];
            belong[i]=cnt;
            g[cnt]+=val[i];
            in[i]=false;
        }while (i!=x);
    }
}
void oinit (int x,int y,int z)
{
//  printf("YES:%d %d %d\n",x,y,z);
    onum++;o[onum].x=x;o[onum].y=y;o[onum].z=z;
    o[onum].last=olast[x];
    olast[x]=onum;
    swap(x,y);z=0;
    onum++;o[onum].x=x;o[onum].y=y;o[onum].z=z;
    o[onum].last=olast[x];
    olast[x]=onum;
}
int st,ed;
int h[N];
bool bt ()
{
    memset(h,-1,sizeof(h));
    queue<int> q;
    q.push(st);h[st]=0;
    while (!q.empty())
    {
        int x=q.front();q.pop();
        for (int u=olast[x];u!=-1;u=o[u].last)
        {
            int y=o[u].y;
        //  printf("%d %d\n",x,y);
            if (h[y]==-1&&o[u].z!=0)
            {
                h[y]=h[x]+1;
                q.push(y);
            }
        }
    }
    return h[ed]!=-1;
}
int find (int x,int xx)
{
    //printf("TKJ");
    if (x==ed) return xx;
    int s1=0;
    for (int u=olast[x];u!=-1;u=o[u].last)
    {
        int y=o[u].y;
        if (h[y]==h[x]+1&&o[u].z>0&&s1<xx)
        {
            int lalal=find(y,min(xx-s1,o[u].z));
            s1+=lalal;
            o[u].z-=lalal;
            o[u^1].z+=lalal;
        }
    }
    if (s1==0) h[x]=0;
    return s1;
}
int solve (int x)//这个点一定要选 
{
    num=0;memset(last1,-1,sizeof(last1));
    dfs(x,0);dfs1(x,0);
    memset(dfn,-1,sizeof(dfn));
    memset(in,false,sizeof(in));
    id=cnt=top=0;
    for (int u=1;u<=n;u++)
        if (dfn[u]==-1)
            Dfs(u);
    onum=1;memset(olast,-1,sizeof(olast));
    for (int u=1;u<=num;u++)
    {
        int x=s[u].x,y=s[u].y;
        if (belong[x]==belong[y]) continue;
        oinit(belong[x],belong[y],MAX);
    }
    st=cnt+1;ed=st+1;
    int sum=0;
    for (int u=1;u<=cnt;u++)
    {
        if (g[u]>0) {sum=sum+g[u];oinit(st,u,g[u]);}
        else oinit(u,ed,-g[u]);
    }
    while (bt()) sum=sum-find(st,MAX);
    return sum;
}
int main()
{
    num=0;memset(last,-1,sizeof(last));
    memset(Last,-1,sizeof(Last));
    scanf("%d",&n);
    for (int u=1;u<=n;u++)
        scanf("%d",&val[u]);
    for (int u=1;u<n;u++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        x++;y++;
        init(x,y);init(y,x);
    }
    num=0;
    for (int u=1;u<n;u++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        x++;y++;
        Init(x,y);Init(y,x);
    }
    solve(1);
    int ans=0;
    for (int u=1;u<=n;u++)
        ans=max(ans,solve(u));
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值