洛谷 [P1890] gcd区间

本文介绍了一种使用ST表解决区间最大公约数(GCD)问题的方法。通过预处理实现O(1)查询效率,适用于数据范围较小的情况。文中详细展示了ST表的构建过程及查询算法。

因为本题的数据范围很小,所以可以预处理一个二维数组,O(1)查询,但是这是一道区间上的题,并且gcd有区间可加性,所以想到了用线段树来维护,然而此题并不用修改,ST表有着比线段树更小的常数。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#define LL long long
using namespace std;
int init(){
    int rv=0,fh=1;
    char c=getchar();
    while(c<'0'||c>'9'){
        if(c=='-') fh=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9'){
        rv=(rv<<1)+(rv<<3)+c-'0';
        c=getchar();
    }
    return rv*fh;
}
int n,m,num[1005],st[1005][15],powerr[15]={1,2,4,8,16,32,64,128,256,512,1024},logg[1005];
int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}
int main(){
    freopen("in.txt","r",stdin);
    n=init();m=init();
    logg[0]=-1;//一定要初始化
    for(int i=1;i<=n;i++){
        logg[i]=logg[i>>1]+1;
    }
    for(int i=1;i<=n;i++){
        num[i]=init();
        st[i][0]=num[i];
    }
    for(int i=1;i<=10;i++){
        for(int j=1;j+powerr[i]-1<=n;j++){//这里的终止条件要写对
            st[j][i]=gcd(st[j][i-1],st[j+powerr[i-1]][i-1]);
        }
    }
    for(int i=1;i<=m;i++){
        int l=init(),r=init();
        printf("%d\n",gcd(st[l][logg[r-l+1]],st[r-powerr[logg[r-l+1]]+1][logg[r-l+1]]));//防止考虑不全,
    }
    fclose(stdin);
    return 0;
}

转载于:https://www.cnblogs.com/Mr-WolframsMgcBox/p/7868269.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值