【bzoj1045】【HAOI2008】 糖果传递

Description

  有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

Input

  第一行一个正整数n<=987654321,表示小朋友的个数.接下来n行,每行一个整数ai,表示第i个小朋友得到的
糖果的颗数.

Output

  求使所有人获得均等糖果的最小代价。

Sample Input

4
1
2
5
4

Sample Output

4

题解:

  膜黄学长。

  首先求出平均数$p$,然后设$x_{i}$表示第i个人要给第$i-1(MOD)n$个人糖果的数量,然后得到$n$个形如$p==a_{i}-x_{i}+x_{i+1}$的方程。

  全部展开就是:

  $$p==a_{1}-x_{1}+x_{2}\rightarrow x_{2}==p-a_{1}+x_{1}$$

  $$p==a_{2}-x_{2}+x_{3}\rightarrow x_{3}==2p-a_{1}-a_{2}+x_{1}$$

  $$...$$

  $$p==a_{n}-x_{n}+x{1}\rightarrow x_{1}==x_{1}$$

  此时我们设$f_{i}=\sum_{x=1}^{i-1}a_{i}-(i-1)p$,上面的方程就可以写作:

  $$x_{2}==x_{1}-f_{2}$$

  $$x_{3}==x_{1}-f_{3}$$

  $$...$$

  $$x_{1}==x_{1}$$

  所以$ans=\sum_{i=1}^{n}|x_{i}|=\sum_{i=1}^{n}|x_{1}-f_{i}|$。

  将其转化到数轴上就是求一个点$x_{1}$,使此点距离所有的$f_{i}$之和最小。

  然后思考,将$f$排序,假设$f_{i}<=x_{1}<=f_{i+1},i\in[1,n]$(显然我们可以知道,$x_{1}$小于或大于$f$极值是不优的)。

  那么我们可以将$f$数组从i这个位置分成两部分。

  我们先假设$i<\frac{n}{2}$($i>\frac{n}{2}$可以类比)。

  $$ans=\sum_{j=1}^{i}(f_{n-j+1}-f_{x})+\sum_{j=i+1}^{n-i}f_{j}-x_{1}$$

  再化简一下就是:

  $$ans=\sum_{j=1}^{\frac{n}{2}}(f_{n-j+1}-f_{j})+\sum_{j=i+1}^{\frac{n}{2}}2(f_{i}-x_{1})$$

  然后就显然了,当我们让后面的最小时,答案最小。

  所以时,答案最小。

  记得开long long。

#include <cstdio>
#include <algorithm>
const int N =( int) 1e6 + 10;
inline int read(){
int s = 0,k = 1; char ch = getchar();
  while(ch < '0' ||ch > '9') k =ch == '-' ?- 1 :k,ch = getchar();
  while(ch > 47 &&ch <= '9') s =s * 10 +(ch ^ 48),ch = getchar();
  return s *k;
}
int n;
int a[N],f[N];
inline int abs( int x){ return x > 0 ?x :-x;}
int main(){
  n = read();
  long long tot = 0;
  for( int i = 1;i <=n;i ++){
    tot +=(a[i] = read());
  }
  tot /=n;
  f[ 1] = 0;
  for( int i = 2;i <=n;i ++)
  f[i] =f[i - 1] -tot +a[i];
  std::sort(f + 1,f +n + 1);
  int mid =f[(n >> 1) + 1];
  long long ans = 0;
  for( int i = 1;i <=n;i ++)
  ans += abs(f[i] -mid);
  printf( " %lld\n ",ans);
}

转载于:https://www.cnblogs.com/Troywar/p/7458787.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值