大意:有k个麻球,每只活一天,死之前可能会生出一些新的麻球,生出i个麻球的概率是pi,求m天后,所有麻球死亡的概率
解法:k个麻球分别独立,可以单独考虑,令f[i]表示1个麻球i天后死亡的概率,考虑它生下j个孩子,那么,这j个孩子在(i-1)(因为原来的麻球一天之后死去了)天死亡后的概率为f[i-1]^j,所以由全概率公式得:f[i]=p0+p1*f[i-1]+p2*f[i-1]^2+……+pn-1*f[i-1]^(n-1)
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 #include <cstring> 5 #include <iomanip> 6 using namespace std; 7 8 long double p[1001], f[1001]; 9 int main() 10 { 11 int t; scanf("%d", &t); 12 for (int kase=1; kase<=t; kase++) 13 { 14 int n, m, k; scanf("%d%d%d", &n, &k, &m); 15 for (int i=0; i<n; i++) cin >> p[i]; 16 memset(f, 0, sizeof(f)); 17 f[0] = 0; f[1] = p[0]; 18 for (int i=2; i<=m; i++) 19 for (int j=0; j<n; j++) f[i] += p[j]*pow(f[i-1],j); 20 cout << "Case #" << kase << ": "; 21 cout << setiosflags(ios::fixed) << setprecision(7) << pow(f[m], k) << endl; 22 } 23 //system("pause"); 24 return 0; 25 }