可以大胆猜想的一点是,只要有不少于一个长度为k的颜色相同子串,方案就是合法的。
直接算有点麻烦,考虑减去不合法的方案。
一个正(xue)常(sha)的思路是枚举序列被分成的段数,问题变为用一些1~k-1的数组成n的方案数,这显然是可以容斥的。但好像对每一种都进行容斥就不太好办了。
暴力二维dp是很容易想到的。考虑去掉一维的暴力,设f[i]为前i位不合法染色方案数,枚举这一段的长度转移。这显然是可以前缀和的。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } #define N 1000010 #define P 1000000007 int n,m,k,f[N],ans; int ksm(int a,int k) { int s=1; for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P; return s; } int main() { #ifndef ONLINE_JUDGE freopen("bzoj5190.in","r",stdin); freopen("bzoj5190.out","w",stdout); const char LL[]="%I64d\n"; #else const char LL[]="%lld\n"; #endif n=read(),m=read(),k=read(); ans=ksm(m,n); for (int i=1;i<=n;i++) if (i-k+1>0) f[i]=(f[i-1]+1ll*(f[i-1]-f[i-k])*(m-1))%P; else f[i]=(f[i-1]+1ll*f[i-1]*(m-1)+m)%P; cout<<((ans-f[n]+f[n-1])%P+P)%P; return 0; }