sjp大佬让我写同余那就只能硬着头皮按学长的ppt来写了,咕咕咕
数学符号
不想一个一个打了,凑合着看吧
快速幂
输入b,p,k的值,求b^p mod k的值。
方法一
直接反复平方,复杂度是$O(n)$基本没戏会TLE的,不用看了
方法二
如果$a$自己乘一次就变成了$a^2$,$a^2$再自乘一次就变成了$a^4$.....乘$n$次就变成了$2^n$
我们将b分解成二进制看一下下
假设b=$11$,分解成二进制就是$(1011)$,从左到右这些 $1$分别代表十进制的 $8$,$2$,$1$,也就是$a^b=a^8 \times a^2 \times a^1$这就是快速幂的原理
int quick_pow(int a, int b)
{
int ans = 1, base = a;
while(b > 0)
{
if(b & 1)//和b%2!=0一样的效果
ans *= base;//把ans乘上对应的a^(2^n)
base *= base;//base自乘
b >>= 1;//位运算,b右移一位,如101变成10(把最右边的1移掉了),10010变成1001。现在b在二进制下最后一位是刚刚的倒数第二位。
}
return ans;
}
同余
概念
若 $m | (a − b)$,则称$ a $与$ b $对模$ m$ 同 余,记作$ a ≡ b (mod m)$
同余的性质
1.自反性:$a ≡ a$
2.对称性:若 $a ≡ b$,则$ b ≡ a$
3.传递性:若$ a ≡ b$,$b ≡ c$,则$ a ≡ c$
4.同余式相加:若 $a ≡ b$,$c ≡ d$,则 $a ± c ≡ b ± d$
5.同余式相乘:若 $a ≡ b$,$c ≡ d$,则 $ac ≡ bd$
6.同幂性:若$a ≡ b(\mod m)$ 则$a^n ≡ b^n(\mod m)$
7.若$a \mod p=x$ ,$a \mod q= x$,则 $p,q$互质,则 $a \mod p*q =x$
证明:
略,太难打了...自行百度吧...咕咕咕
乘法逆元
概念:
若 $ap ≡ 1 (mod m)$,则称 $a$ 和 $p$在模 $m $意义下互为乘法逆
元。简称$ a $是 $p$ 的逆元或$ p$ 是$$ 的逆元。为了方便我们常把 $a$
的乘法逆元记做$ a^{-1}$ 。
}
因为 $a \times a^{-1} ≡ 1$,所以我们可以把$ a^{−1} $看作$\frac{1}{a} $。但请注意在模意义下不存在除法操作。乘法逆元可能不存在。
来自谷歌的解释:
$a⋅a′≡1\pmod p$
我们称a′是a在模p意义下的乘法逆元,记作$a^{-1}$。
其用途和倒数类似,若要在模$p$意义下将$a$除以$b$,不能直接$a/b$,因为除法是不满足模运算的,此时我们需要转为乘法:$a⋅b^{-1}$。
求逆元的方法
扩展欧几里得
假如$b=1$,由于$gcd(a,b)=1$,因此$a=x=1$
假如$b≠1$,不妨假设$a=kb+r$,并且我们已经求出了$bx+ry=1$的一组解$(x_0,y_0)$
$bx_0+(a-kb)y_0=1$
$ax_1+by_1=1$
$bx_0+ay_0-kby_0=b(x_0-ky_0)+ay_0=ax_1+by_1$
$x_1=y_0$
$y_1=x_0-ky_0$
那么$(x_1,y_1)$就是$ax+by=1$的一组解,这不就是exgcd?
void exgcd(int a, int b, int& x, int& y) {
if (b == 0) {
x = 1, y = 0;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
}
快速幂法$o(n*log(n))$
p是质数
根据费马小定理:
若 $p$ 为质数, $a$ 为正整数,且 $a$ 、 $p$ 互质,则 $a^{p-1} \equiv 1 \pmod p$ 。
因 $ax \equiv 1 \pmod b$
所以 $ax \equiv a^{b-1} \pmod b$
所以 $x \equiv a^{b-2} \pmod b$
所以我们可以用快速幂来算出 $a^{p-2} \pmod p$值,这个数就是它的逆元了
代码就是快速幂,不会的请点这里
递推法$o(n)$
p必须是质数
设 $p=ki+j,j<i,1<i<p$ ,再放到 $\mod p$ 意义下就会得到: $ki+j \equiv 0 \pmod p$
两边同时乘 $i^{-1},j^{-1}$ (注意:$1^{-1} \equiv 1 \pmod p$ )
$kj^{-1}+i^{-1} \equiv 0 \pmod p$ ;
$i^{-1} \equiv -kj^{-1}+ \pmod p$ ;
$i^{-1} \equiv -(\frac{p}{i}) (p \mod i)^{-1}$ ;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long p,c[3000005];
int main()
{
long long n;
scanf("%lld%lld",&n,&p);
c[1]=1;
printf("1\n");
for(register int i=2; i<=n; i++)
{
c[i]=(p-p/i)*c[p%i]%p;
printf("%lld\n",c[i]);
}
return 0;
}
模板题目:
代码:
方法一:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long p,c[3000005];
int main()
{
long long n;
scanf("%lld%lld",&n,&p);
c[1]=1;
printf("1\n");
for(register int i=2; i<=n; i++)
{
c[i]=(p-p/i)*c[p%i]%p;
printf("%lld\n",c[i]);
}
return 0;
}
方法二:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long p;
long long quick_pow(long long x,long long y)
{
long long ans=1;
while(y!=0)
{
if(y&1)
{
ans=((ans%p)*(x%p))%p;
}
x=((x%p)*(x%p))%p;
y>>=1;
}
return ans;
}
int main()
{
long long n;
scanf("%lld%lld",&n,&p);
for( int i=1;i<=n;i++)
{
printf("%lld\n",(quick_pow(i,p-2))%p);
}
return 0;
}