同余and乘法逆元学习笔记

sjp大佬让我写同余那就只能硬着头皮按学长的ppt来写了,咕咕咕

数学符号

1660941-20190518081327588-1144593239.jpg

1660941-20190518081332120-1676946252.jpg

不想一个一个打了,凑合着看吧

快速幂

输入b,p,k的值,求b^p mod k的值。

方法一

直接反复平方,复杂度是$O(n)$基本没戏会TLE的,不用看了

方法二

如果$a$自己乘一次就变成了$a^2$,$a^2$再自乘一次就变成了$a^4$.....乘$n$次就变成了$2^n$

我们将b分解成二进制看一下下

假设b=$11$,分解成二进制就是$(1011)$,从左到右这些 $1$分别代表十进制的 $8$,$2$,$1$,也就是$a^b=a^8 \times a^2 \times a^1$这就是快速幂的原理

int quick_pow(int a, int b)
{
    int ans = 1, base = a;
    while(b > 0)
    {
        if(b & 1)//和b%2!=0一样的效果
            ans *= base;//把ans乘上对应的a^(2^n)

        base *= base;//base自乘
        b >>= 1;//位运算,b右移一位,如101变成10(把最右边的1移掉了),10010变成1001。现在b在二进制下最后一位是刚刚的倒数第二位。
    }
    return ans;
}

同余

概念

若 $m | (a − b)$,则称$ a $与$ b $对模$ m$ 同 余,记作$ a ≡ b (mod m)$

同余的性质

1.自反性:$a ≡ a$
2.对称性:若 $a ≡ b$,则$ b ≡ a$
3.传递性:若$ a ≡ b$,$b ≡ c$,则$ a ≡ c$
4.同余式相加:若 $a ≡ b$,$c ≡ d$,则 $a ± c ≡ b ± d$
5.同余式相乘:若 $a ≡ b$,$c ≡ d$,则 $ac ≡ bd$
6.同幂性:若$a ≡ b(\mod m)$ 则$a^n ≡ b^n(\mod m)$
7.若$a \mod p=x$ ,$a \mod q= x$,则 $p,q$互质,则 $a \mod p*q =x$
证明:
略,太难打了...自行百度吧...咕咕咕

乘法逆元

概念:

若 $ap ≡ 1 (mod m)$,则称 $a$ 和 $p$在模 $m $意义下互为乘法逆
元。简称$ a $是 $p$ 的逆元或$ p$ 是$$ 的逆元。为了方便我们常把 $a$
的乘法逆元记做$ a^{-1}$ 。
}
因为 $a \times a^{-1} ≡ 1$,所以我们可以把$ a^{−1} $看作$\frac{1}{a} $。但请注意在模意义下不存在除法操作。乘法逆元可能不存在

来自谷歌的解释:

$a⋅a′≡1\pmod p$
我们称a′是a在模p意义下的乘法逆元,记作$a^{-1}$。
其用途和倒数类似,若要在模$p$意义下将$a$除以$b$,不能直接$a/b$,因为除法是不满足模运算的,此时我们需要转为乘法:$a⋅b^{-1}$。

求逆元的方法

扩展欧几里得

假如$b=1$,由于$gcd(a,b)=1$,因此$a=x=1$

假如$b≠1$,不妨假设$a=kb+r$,并且我们已经求出了$bx+ry=1$的一组解$(x_0,y_0)$

$bx_0+(a-kb)y_0=1$

$ax_1+by_1=1$

$bx_0+ay_0-kby_0=b(x_0-ky_0)+ay_0=ax_1+by_1$

$x_1=y_0$
$y_1=x_0-ky_0$

那么$(x_1,y_1)$就是$ax+by=1$的一组解,这不就是exgcd?

void exgcd(int a, int b, int& x, int& y) {
  if (b == 0) {
    x = 1, y = 0;
    return;
  }
  exgcd(b, a % b, y, x);
  y -= a / b * x;
}

快速幂法$o(n*log(n))$

p是质数

根据费马小定理:

若 $p$ 为质数, $a$ 为正整数,且 $a$ 、 $p$ 互质,则 $a^{p-1} \equiv 1 \pmod p$ 。
因 $ax \equiv 1 \pmod b$

所以 $ax \equiv a^{b-1} \pmod b$

所以 $x \equiv a^{b-2} \pmod b$

所以我们可以用快速幂来算出 $a^{p-2} \pmod p$值,这个数就是它的逆元了

代码就是快速幂,不会的请点这里

递推法$o(n)$

p必须是质数

设 $p=ki+j,j<i,1<i<p$ ,再放到 $\mod p$ 意义下就会得到: $ki+j \equiv 0 \pmod p$

两边同时乘 $i^{-1},j^{-1}$ (注意:$1^{-1} \equiv 1 \pmod p$ )

$kj^{-1}+i^{-1} \equiv 0 \pmod p$ ;

$i^{-1} \equiv -kj^{-1}+ \pmod p$ ;

$i^{-1} \equiv -(\frac{p}{i}) (p \mod i)^{-1}$ ;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
long long p,c[3000005];
int main()
{
    long long n;
    scanf("%lld%lld",&n,&p);
    c[1]=1;
    printf("1\n");
    for(register int i=2; i<=n; i++)
    {
        c[i]=(p-p/i)*c[p%i]%p;
        printf("%lld\n",c[i]);
    }
    return 0;
}

模板题目:

P3811 【模板】乘法逆元

代码:

方法一:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
long long p,c[3000005];
int main()
{
    long long n;
    scanf("%lld%lld",&n,&p);
    c[1]=1;
    printf("1\n");
    for(register int i=2; i<=n; i++)
    {
        c[i]=(p-p/i)*c[p%i]%p;
        printf("%lld\n",c[i]);
    }
    return 0;
}
方法二:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
long long p;
long long quick_pow(long long x,long long y)
{
    long long ans=1;
    while(y!=0)
    {
        if(y&1)
        {
            ans=((ans%p)*(x%p))%p;
        }
        x=((x%p)*(x%p))%p;
        y>>=1;
    }
    return ans;
}
int main()
{
    long long n;
    scanf("%lld%lld",&n,&p);
    for( int i=1;i<=n;i++)
    {
        printf("%lld\n",(quick_pow(i,p-2))%p);
    }
    return 0;
}

转载于:https://www.cnblogs.com/pyyyyyy/p/10884521.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>