初等数论学习笔记

前言

这篇文章将同步发布与洛谷。
洛谷博客

线性筛素数

直接上代码。

const int MAXN=100000008;
bool np[MAXN];
vector<int> prm,pre;
void gg(const int N=100000000){
	pre.resize(N+1);
	for(int i=2;i<=N;i++){
		if(np[i]==false){
			prm.push_back(i);
			pre[i]=i;
		}
		for(auto j:prm) if(i*j<=N){
			int k=i*j;
			pre[k]=j;
			np[k]=true;
			if(i%j==0) break;
		}else break;
	}
}

例题:B3716 分解质因子 3

说明一下,prm 存了所有范围内的素数,pre 存了第 i i i 个数的最小质因子。

这个板子直接背过就好了。(其实是我懒得讲

不等式方程

形如 a x + b y = c ax+by=c ax+by=c 的方程( a , b a,b a,b 为整数),方程有解当且仅当 gcd ⁡ ( a , b ) ∣ c \gcd(a,b)|c gcd(a,b)c

欧几里得算法: gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) \gcd(a,b)=\gcd(b,a \bmod b) gcd(a,b)=gcd(b,amodb)

a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 求解:

a ∣ b a|b ab 时, a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 解为 { x = 0 y = 1 \begin{cases}x=0\\y=1\end{cases} {x=0y=1

∵ a x + b y = gcd ⁡ ( a , b ) = gcd ⁡ ( b , a   m o d   b ) = b x 1 + ( a   m o d   b ) y 1 = b x 1 + ( a − ⌊ a b ⌋ × b ) y 1 = b x 1 + ( a − ⌊ a b ⌋ × b ) y 1 = a y 1 + b ( x 1 − ⌊ a b ⌋ × y 1 ) \begin{aligned}\because ax+by&=\gcd(a,b)\\&=\gcd(b,a \bmod b)\\&=bx_1+(a\bmod b)y_1\\&=bx_1+(a-\lfloor\dfrac{a}{b}\rfloor \times b)y_1\\&=bx_1+(a-\lfloor\frac{a}{b}\rfloor \times b)y_1\\&=ay_1+b(x_1-\lfloor\frac{a}{b}\rfloor \times y_1) \end{aligned} ax+by=gcd(a,b)=gcd(b,amodb)=bx1+(amodb)y1=bx1+(aba×b)y1=bx1+(aba×b)y1=ay1+b(x1ba×y1)

∴ { x = y 1 y = x 1 − ⌊ a b ⌋ × y 1 \therefore \begin{cases}x=y_1\\y=x_1-\lfloor \frac{a}{b} \rfloor \times y_1 \end{cases} {x=y1y=x1ba×y1

∴ \therefore 可以递归求解。

公式对不齐好难受啊。QWQ \color{white}{\text{公式对不齐好难受啊。QWQ}} 公式对不齐好难受啊。QWQ

递归函数
void gg(int &x,int &y,int a,int b){
	if(a%b==0){
		x=0,y=1;
	}else{
		int xx,yy;
		gg(xx,yy,b,a%b);
		x=yy;y=xx-a/b*yy;
	}
}

裴蜀定理(写于 2023.4.14)

这个是后补的。QWQ

定义

a , b a,b a,b 是不全为零的整数,则存在整数 x , y x,y x,y , 使得 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)

然后就发现前面的式子求的就是裴蜀定理的式子。

然后写一个我自己发现的东西:(只不过我看过的文章都没讲过,可能是因为为太简单了

a x + b y = c ax+by=c ax+by=c 的解,其中 a , b a,b a,b 为整数且 gcd ⁡ ( a , b ) ∣ c \gcd(a,b)|c gcd(a,b)c

首先求出 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 的解,设解为 { x = x ′ y = y ′ \begin{cases}x=x'\\y=y'\end{cases} {x=xy=y

再设 k = c gcd ⁡ ( a , b ) k=\dfrac{c}{\gcd(a,b)} k=gcd(a,b)c,则 a x + b y = c ax+by=c ax+by=c 的解为 { x = k x ′ y = k y ′ \begin{cases}x=kx'\\y=ky'\end{cases} {x=kxy=ky

然后就没了。QWQ

进一步的结论可以去下面的链接。

裴蜀定理

同余

概念

对两个整数 a a a b b b,如果它们除以 d 的余数相同,则称它们
d d d 同余
,记作:

a ≡ b ( m o d d ) a \equiv b\pmod d ab(modd)


一个小知识

a − k × b = r → a ≡ r ( m o d b ) a-k \times b=r \to a \equiv r \pmod b ak×b=rar(modb)

k k k 为任意整数)

威尔逊定理(没啥卵用)

正整数 p p p 是质数的充要条件为:

( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)! \equiv -1 \pmod p (p1)!1(modp)

欧拉函数

φ ← \varphi \leftarrow φ 就是这个玩意。

定义

欧拉函数 φ ( n ) \varphi(n) φ(n) 表示小于等于 n n n(其实等不等于 n n n 无所谓,因为 n n n 一定不与 n n n 互质)且与 n n n 互质的正整数(与 n n n 互质即对于一个数 i i i gcd ⁡ ( i , n ) = 1 \gcd(i,n)=1 gcd(i,n)=1 或者说是 n ⊥ i n \perp i ni)的个数。

特别的, φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1

顺便提一嘴, 1 1 1 与任何数都互质

显然, 对于一个正整数 a a a a a a 是质数当且仅当 φ ( a ) = a − 1 \varphi(a)=a-1 φ(a)=a1

性质

积性:如果对于任意两个正整数 a , b a,b a,b,如果 gcd ⁡ ( a , b ) = 1 \gcd(a,b)=1 gcd(a,b)=1(即 a ⊥ b a \perp b ab), φ ( a × b ) = φ ( a ) × φ ( b ) \varphi(a \times b)=\varphi(a)\times\varphi(b) φ(a×b)=φ(a)×φ(b)

欧拉反演: ∑ d ∣ n φ ( d ) = n \sum\limits_{d \mid n}\varphi(d)=n dnφ(d)=n。( ∑ d ∣ n F ( d ) \sum_{d \mid n}F(d) dnF(d) 表示把 n n n 以内所有能整除 n n n 的数 d d d 带入 F ( d ) F(d) F(d) 中求和)

性质三(很重要):对于任意质数 p p p φ ( p k ) = p k − p k − 1 \varphi(p^k)=p^k-p^{k-1} φ(pk)=pkpk1

接下来是举例子时间。QWQ

φ ( 3 × 7 ) = φ ( 21 ) = 12 \begin{aligned}\varphi(3 \times 7)&=\varphi(21)\\&=12\end{aligned} φ(3×7)=φ(21)=12

φ ( 3 ) × φ ( 7 ) = 2 × 6 = 12 \begin{aligned}\varphi(3)\times\varphi(7)&=2\times6\\&=12\end{aligned} φ(3)×φ(7)=2×6=12

然鹅,

φ ( 2 × 4 ) = φ ( 8 ) = 4 \begin{aligned}\varphi(2 \times 4)&=\varphi(8)\\&=4\end{aligned} φ(2×4)=φ(8)=4

φ ( 2 ) × φ ( 4 ) = 1 × 2 = 2 \begin{aligned}\varphi(2)\times\varphi(4)&=1\times2\\&=2\end{aligned} φ(2)×φ(4)=1×2=2

∵ gcd ⁡ ( 2 , 4 ) ≠ 1 ∴ φ ( 2 × 4 ) ≠ φ ( 2 ) × φ ( 4 ) \begin{aligned}&\because \gcd(2,4)\ne1 \\&\therefore \varphi(2 \times 4) \ne \varphi(2)\times\varphi(4)\end{aligned} gcd(2,4)=1φ(2×4)=φ(2)×φ(4)


∑ d ∣ 8 φ ( d ) = φ ( 1 ) + φ ( 2 ) + φ ( 4 ) + φ ( 8 ) = 1 + 1 + 2 + 4 = 8 \begin{aligned}\sum\limits_{d \mid 8}\varphi(d)&=\varphi(1)+\varphi(2)+\varphi(4)+\varphi(8)\\&=1+1+2+4\\&=8\end{aligned} d8φ(d)=φ(1)+φ(2)+φ(4)+φ(8)=1+1+2+4=8


性质三证明:小于等于 p k p^k pk 的数有 p k p^k pk 个,其中 p , 2 × p , 3 × p . . . t × p p,2\times p,3\times p...t\times p p,2×p,3×p...t×p p p p 不互质,显然, t = p k − 1 t=p^{k-1} t=pk1,所以与 p p p 不互质的数有 p k − 1 p^{k-1} pk1 个,那么与 p p p 互质的数就有 p k − p k − 1 p^k-p^{k-1} pkpk1 个,即 φ ( p k ) = p k − p k − 1 \varphi(p^k)=p^k-p^{k-1} φ(pk)=pkpk1

计算欧拉函数

单个欧拉函数:设 n n n 的唯一分解式(就是质因数分解)为 n = p 1 k 1 × p 2 k 2 × . . . × p s k s n=p_1^{k_1} \times p_2^{k_2} \times ... \times p_s^{k_s} n=p1k1×p2k2×...×psks显然, p 1 p_1 p1 p s p_s ps 均为质数,且 p 1 k 1 , p 2 k 2 . . . p s k s p_1^{k_1},p_2^{k_2}...p_s^{k_s} p1k1,p2k2...psks 两两互质),则 φ ( n ) = ∏ i = 1 s φ ( p i k i ) \varphi(n)=\prod\limits_{i=1}^s \varphi(p_i^{k_i}) φ(n)=i=1sφ(piki) ∏ i = 1 s φ ( p i k i ) \prod\limits_{i=1}^s \varphi(p_i^{k_i}) i=1sφ(piki) 能用性质三求解(其实就是 φ ( n ) = ∏ i = 1 s ( p i k i − p i k i − 1 ) \varphi(n)=\prod\limits_{i=1}^s (p_i^{k_i}-p_i^{k_i-1}) φ(n)=i=1s(pikipiki1))。

线性筛欧拉函数

在线性筛素数的同时可以筛出欧拉函数,设 p p p i i i 的最小质因子,分三种情况讨论:

  1. i i i 为质数, φ ( i ) = i − 1 \varphi(i)=i-1 φ(i)=i1

  2. p p p i p \frac{i}{p} pi 的质因子, φ ( i ) = φ ( i p ) × p \varphi(i)=\varphi(\frac{i}{p}) \times p φ(i)=φ(pi)×p

  3. p p p i p \frac{i}{p} pi 互质, φ ( i ) = φ ( i p ) × φ ( p ) \varphi(i)=\varphi(\frac{i}{p}) \times \varphi(p) φ(i)=φ(pi)×φ(p)

证明:

  1. 显然

  2. i = p k × q i=p^k \times q i=pk×q,其中 q q q 不含质因子 p p p。则 φ ( i ) = φ ( q ) × φ ( p k ) = φ ( q ) × ( p k − p k − 1 ) = φ ( q ) × p ( p k − 1 − p k − 2 ) = φ ( q ) × p × φ ( p k − 1 ) = φ ( i p ) × p \varphi(i)=\varphi(q) \times \varphi(p^k)=\varphi(q) \times (p^k-p^{k-1})=\varphi(q) \times p(p^{k-1}-p^{k-2})=\varphi(q) \times p \times \varphi(p_{k-1})=\varphi(\frac{i}{p}) \times p φ(i)=φ(q)×φ(pk)=φ(q)×(pkpk1)=φ(q)×p(pk1pk2)=φ(q)×p×φ(pk1)=φ(pi)×p

  3. 根据积性可得。

例题:P2158 [SDOI2008] 仪仗队

假如 C君 在仪仗队的左前方,坐标为 ( 0 , 0 ) (0,0) (0,0)

首先可以发现,对于一个坐标 ( i , j ) (i,j) (i,j)C君 能看到这个位置当且仅当 gcd ⁡ ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1,并且在与 C君 位置相交的对角线左右两边能看到的位置对称。

可以推个柿子

n ≤ 2 n\le 2 n2 时:

a n s = 2 ∑ i = 1 n − 1 ∑ j = 1 i − 1 [ gcd ⁡ ( i , j ) = 1 ] + 3 ans=2\sum\limits^{n-1}_ {i=1}\sum\limits^{i-1}_ {j=1} [\gcd(i,j)=1] +3 ans=2i=1n1j=1i1[gcd(i,j)=1]+3

a n s = 2 ∑ i = 1 n − 1 φ ( i ) + 3 ans=2\sum\limits^{n-1}_ {i=1} \varphi(i) +3 ans=2i=1n1φ(i)+3

用线性筛欧拉函数即可,记得当 n = 1 n=1 n=1 时特判一下。

代码:

#include<bits/stdc++.h>
#define XD 114514
#define MAXN 40010
using namespace std;
int n;
int phi[MAXN];
bool np[MAXN];
vector<int> prm,pre;
long long ans;
void gg(){
	pre.resize(n+10);
	for(int i=2;i<=n;i++){
		if(np[i]==false){
			phi[i]=i-1;
			pre[i]=i;
			prm.push_back(i);
		}
		for(int j=0;j<prm.size();j++){
			if(i*prm[j]<=n){
				int k=i*prm[j];
				pre[k]=prm[j];
				np[k]=true;
				if(i%prm[j]==0){
					phi[k]=phi[i]*prm[j];
					break;
				}else{
					phi[k]=phi[i]*phi[prm[j]];
				}
			}else break;
		}
	}
}
int main(){
	cin>>n;
	if(n==1) cout<<0;
	else{
		gg();
		for(int i=1;i<=n-1;i++) ans+=phi[i];
		cout<<(ans+1)*2+1;
	}
	return 0;
}

欧拉定理

对任意正整数 a , m a,m a,m gcd ⁡ ( a , m ) = 1 \gcd(a,m)=1 gcd(a,m)=1,一定有: a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)} \equiv 1 \pmod m aφ(m)1(modm)

逆元

定义

对于任意正整数 x x x 满足 x × x 0 ≡ 1 ( m o d p ) x \times x_0 \equiv 1 \pmod p x×x01(modp),则称 x 0 x_0 x0 x x x 在模 p p p 同余下的逆元(其实就跟普通的 x × x − 1 = 1 x \times x^{-1}=1 x×x1=1 中的 x − 1 x^{-1} x1 差不多,只不过 x 0 x_0 x0 是在模 p p p 同余下,而且在模 p p p 同余下 x × x 0 = 1 x\times x_0=1 x×x0=1,然后就可以得出 x k × x 0 ≡ x k − 1 ( m o d p ) x^k \times x_0 \equiv x^{k-1} \pmod p xk×x0xk1(modp)

为了方便理解,我就先把下文中所有的字母下面带 0 0 0 的都为这个字母代表的数在模某一个数同余下的逆元。(因为我在听课时老师是用 x − 1 x^{-1} x1 表示 x x x 在模 p p p 同余下的逆元QWQ)

性质(这些记住就行QWQ)

逆元存在性定理: x x x 在模 p p p 同余下存在逆元当且仅当 gcd ⁡ ( x , p ) = 1 \gcd(x,p)=1 gcd(x,p)=1

推论:当且仅当模数 p p p 是质数时, [ 1 , p − 1 ] [1, p − 1] [1,p1] 内所有整数都存在模 p p p 下的逆元。 0 0 0 没有逆元。

逆元唯一性定理:模 p p p 同余下,一个整数 x x x 的逆元若存在,则唯一。

定理:在模质数 p p p 同余下, [ 1 , p − 1 ] [1, p − 1] [1,p1] 内所有整数的逆元互不相同。

定理:一个数的逆元的逆元等于它自身。

计算逆元

先上例题。

P1082 [NOIP2012 提高组] 同余方程

根据逆元定义可得这是一道求逆元板子题(显然)。

因为题目说输入数据保证一定有解,根据逆元存在性定理可得 gcd ⁡ ( a , b ) = 1 \gcd(a,b)=1 gcd(a,b)=1

开始求逆元喽。

a × x ≡ 1 ( m o d b ) a \times x \equiv 1 \pmod b a×x1(modb)

∴ a × x = 1 + b × k \therefore a\times x =1 + b \times k a×x=1+b×k

∴ a × x + b × k = 1 \therefore a\times x + b \times k = 1 a×x+b×k=1

(由于 k k k 为任意整数,我们不知道它是正数还是负数,就把前面的正负号省略了)

然后可以发现,这不就是一个不定方程吗。(因为 a , b a,b a,b 为已知量,只需求 x x x

在前面我们知道 gcd ⁡ ( a , b ) = 1 \gcd(a,b)=1 gcd(a,b)=1,所以可以用递归求解即可。

最后记得把 x x x 取模到 [ 1 , b − 1 ] [1,b-1] [1,b1] 的范围即可。QWQ

代码如下。

#include<bits/stdc++.h>
#define XD 114514
#define int long long
using namespace std;
inline void gg(int &x,int &y,int a,int b){
	if(a%b==0){
		x=0,y=1;
	}else{
		int xx,yy;
		gg(xx,yy,b,a%b);
		x=yy;
		y=xx-a/b*yy;
	}
}
signed main(){
	int a,b,x,y;
	cin>>a>>b;
	gg(x,y,a,b);
	cout<<(x%b+b)%b;
	return 0;
}

当然也可以像下面这样写。

#include<bits/stdc++.h>
#define XD 114514
#define int long long
using namespace std;
inline void gg(int &x,int &y,int a,int b){
	if(a%b==0){
		x=0,y=1;
		return;
	}
	gg(y,x,b,a%b);
	y-=a/b*x;
}
signed main(){
	int a,b,x,y;
	cin>>a>>b;
	gg(x,y,a,b);
	cout<<(x%b+b)%b;
	return 0;
}

欧拉定理的继续

欧拉定理有一个前提条件就是 gcd ⁡ ( a , m ) = 1 \gcd(a,m)=1 gcd(a,m)=1,根据逆元存在性定理就可得出这个 a a a 在模 m m m 同余下一定有逆元。让我们推个式子。QWQ

a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)} \equiv 1 \pmod m aφ(m)1(modm)

a φ ( m ) × a 0 ≡ a 0 ( m o d m ) a^{\varphi(m)}\times a_0 \equiv a_0 \pmod m aφ(m)×a0a0(modm)

a φ ( m ) − 1 ≡ a 0 ( m o d m ) a^{\varphi(m)-1} \equiv a_0 \pmod m aφ(m)1a0(modm)

然后我们就得到了另一个求逆元的方法。(虽然不是很好用)

但是当 m m m 是质数时, a φ ( m ) ≡ 1 ( m o d m ) a^{\varphi(m)} \equiv 1 \pmod m aφ(m)1(modm) 就可以转化成 a m − 1 ≡ 1 ( m o d m ) a^{m-1} \equiv 1 \pmod m am11(modm),于是费马小定理出现了

费马小定理

对任意整数 a a a 和质数 p p p a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod p ap11(modp)

根据式子可以推出:

a 0 ≡ a p − 2 ( m o d p ) a_0 \equiv a^{p-2} \pmod{p} a0ap2(modp)

然后我们就又双叒叕得到了一个求逆元的方法(用快速幂求一下 a p − 2   m o d   p a^{p-2} \bmod p ap2modp 即可)。

上个题QWQ P2613 【模板】有理数取余

a b   m o d   19260817 \frac{a}{b} \bmod 19260817 bamod19260817 的值。

让我们算一算吧。

a b   m o d   19260817 \frac{a}{b} \bmod 19260817 bamod19260817

a × b 0   m o d   19260817 a \times b_0 \bmod 19260817 a×b0mod19260817

所以我们只需算出 b b b 19260817 19260817 19260817 同余下的逆元。由于 19260817 19260817 19260817 为一个质数,用费马小定理求即可。

而无解的情况就是 b b b 19260817 19260817 19260817 倍数,那么 b   m o d   19260817 b \bmod 19260817 bmod19260817 一定等于 0 0 0

直接上代码。

#include<bits/stdc++.h>
#define XD 114514
#define mod 19260817
using namespace std;
inline long long read(){
	char ch=getchar(),h;long long w=0;
	while(ch>'9' or ch<'0') h=ch,ch=getchar();
	while(ch>='0' and ch<='9') w=(w*10+(ch-'0'))%mod,ch=getchar();
	if(h=='-') w=-w;
	return w;
}
long long a,b;
inline long long gg(long long x,long long k){
	//求 x 在模 mod 同余下的逆元,即求 x^(mod-2)%mod 的值
	//这里 k 就表示 mod-2 的值 
	long long ans=1;
	while(k){
		if(k&1){
			ans*=x;ans%=mod;
		}
		x*=x;x%=mod;
		k>>=1;
	}
	return ans;
}//快速幂是啥偶就不讲了QWQ 
int main(){
	a=read(),b=read();
	if(b==0) cout<<"Angry!\n";
	else cout<<a*gg(b,mod-2)%mod;
	return 0;
}

线性求逆元

i n v i inv_i invi 表示 i i i 的逆元,有递推式:

i n v i ≡ − ⌊ p i ⌋ × i n v p   m o d   i ( m o d p ) inv_i \equiv - \lfloor \frac{p}{i} \rfloor \times inv_{p \bmod i} \pmod p inviip×invpmodi(modp)

边界为 i n v 1 = 1 inv_1 = 1 inv1=1

又要开始推式子了。

p = i × k + r ( r ∈ [ 1 , n ) ) p=i \times k +r (r \in [1,n)) p=i×k+r(r[1,n))

0 ≡ i × k + r ( m o d p ) 0 \equiv i \times k + r \pmod p 0i×k+r(modp)

r ≡ − i × k ( m o d p ) r \equiv -i \times k \pmod p ri×k(modp)

r × r 0 × i 0 ≡ − i × i 0 × r 0 × k ( m o d p ) r \times r_0 \times i_0 \equiv -i \times i_0 \times r_0 \times k \pmod p r×r0×i0i×i0×r0×k(modp)

i 0 ≡ − k × r 0 ( m o d p ) i_0 \equiv -k \times r_0 \pmod p i0k×r0(modp)

i n v i ≡ − ⌊ p i ⌋ × r 0 ( m o d p ) inv_i \equiv -\lfloor \frac{p}{i} \rfloor \times r_0 \pmod p inviip×r0(modp)

i n v i ≡ − ⌊ p i ⌋ × i n v p   m o d   i ( m o d p ) inv_i \equiv -\lfloor \frac{p}{i} \rfloor \times inv_{p \bmod i} \pmod p inviip×invpmodi(modp)

再解释一下,我们刚开始设 p = i × k + r p=i \times k +r p=i×k+r,其中 r ∈ [ 1 , n ) r \in [1,n) r[1,n)显然, k = ⌊ p i ⌋ k=\lfloor \frac{p}{i} \rfloor k=ip r = p   m o d   i r=p \bmod i r=pmodi,这样应该能看懂了吧。QWQ

P3811 【模板】乘法逆元

下面是代码。

#include<bits/stdc++.h>
#define XD 114514
#define MAXN 3000010
using namespace std;
int n,p,inv[MAXN];
int main(){
	ios::sync_with_stdio(false);
	cin>>n>>p;
	inv[1]=1;
	for(int i=2;i<=n;i++){
//		inv[i]=(1ll*-(p/i)*inv[p%i]%p+p)%p;
		inv[i]=1ll*(p-p/i)*inv[p%i]%p;//这两个算式等价,只不过这个少取模一次 
		//实测,在P3811中第一个用398ms,第二个用338ms
	}
	for(int i=1;i<=n;i++) cout<<inv[i]<<'\n';
	return 0;
}

说句闲话,我刚开始做这道题时一直 T L E \color{black}{TLE} TLE 了两个点,最后把换行符 endl 改为 '\n' A C \color{green}{AC} AC 了,这个故事告诉我们,珍爱生命,远离 endl

B3717 组合数问题

首先知道:

C n m = n ! m ! ( n − m ) ! C^m_n=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

显然:

C n m ≡ n ! m ! ( n − m ) ! ( m o d 998244353 ) C^m_n \equiv \frac{n!}{m!(n-m)!} \pmod {998244353} Cnmm!(nm)!n!(mod998244353)

之后就把 998244353 998244353 998244353 当做 p p p 就行了不然打一个九位数太麻烦了,而且一个数 x x x 的逆元就当做 x − 1 x^{-1} x1 就行了。

n ! m ! ( n − m ) !   m o d   p = n ! × ( m ! ) − 1 × [ ( n − m ) ! ] − 1   m o d   p \frac{n!}{m!(n-m)!} \bmod p= n! \times (m!)^{-1} \times [(n-m)!]^{-1} \bmod p m!(nm)!n!modp=n!×(m!)1×[(nm)!]1modp

然后求 ( m ! ) − 1 (m!)^{-1} (m!)1显然:

( m ! ) − 1 ≡ 1 − 1 × 2 − 1 × 3 − 1 × . . . × ( m − 1 ) − 1 × m − 1 ( m o d p ) (m!)^{-1} \equiv 1^{-1} \times 2^{-1} \times 3^{-1} \times ... \times (m-1)^{-1} \times m^{-1} \pmod p (m!)111×21×31×...×(m1)1×m1(modp)

所以先线性求一遍逆元,然后预处理出所有阶乘的逆元即可。

上代码。

#include<bits/stdc++.h>
#define XD 114514

using namespace std;
int T,N;
const int p=998244353;
int ans;
int main(){
	ios::sync_with_stdio(false);
	cin>>T>>N;
	vector<int> inv(N+1),a(N+1),b(N+1);
	inv[1]=1;//inv_i 表示 i 的逆元 
	a[1]=1;//a_i 表示 i!的值 
	b[0]=b[1]=1;//b_i 表示 i! 的逆元的值 
	for(int i=2;i<=N;i++){
		inv[i]=1ll*(p-p/i)*inv[p%i]%p;
		a[i]=1ll*a[i-1]*i%p;
		b[i]=1ll*b[i-1]*inv[i]%p;
	}
	while(T--){
		int n,m,num=1;
		cin>>n>>m;
		num=1ll*a[n]*b[m]%p*b[n-m]%p;
		ans^=num;
	}
	cout<<ans;
	return 0;
}

中国剩余定理(CRT)

它是用来解决一个问题的。

问题

给定 n n n 个线性同余方程:

{ x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) . . . x ≡ a n ( m o d m n ) \begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ ... \\ x \equiv a_n \pmod {m_n} \end{cases} xa1(modm1)xa2(modm2)...xan(modmn)

其中保证 m 1 , m 2 , . . . , m n m_1,m_2,...,m_n m1,m2,...,mn 两两互质。求 x x x 的通解。

定理

上面的方程组有解,且按如下方式构造:

M = ∏ i = 1 n m i M=\prod\limits^n_{i=1}m_i M=i=1nmi M i = M m i M_i=\frac{M}{m_i} Mi=miM t i t_i ti M i M_i Mi 在模 m i m_i mi 同余下的逆元。

则方程组的唯一通解是:

x ≡ ∑ i = 1 n a i t i M i ( m o d M ) x \equiv \sum\limits^n_{i=1}a_i t_i M_i \pmod M xi=1naitiMi(modM)

证明

显然:

gcd ⁡ ( M i , m i ) = 1 \gcd(M_i,m_i)=1 gcd(Mi,mi)=1

且,

M i t i ≡ 1 ( m o d m i ) M_it_i \equiv 1 \pmod {m_i} Miti1(modmi)

(能够保证 M i M_i Mi 在模 m i m_i mi 同余下一定有逆元)

∴ a i M i t i ≡ a i ( m o d m i ) \therefore a_iM_it_i \equiv a_i \pmod{m_i} aiMitiai(modmi)

另外,对于一个 j j j j ≠ i j \ne i j=i),由于 m i ∣ M i m_i | M_i miMi,于是 M j ≡ 0 ( m o d m i ) M_j \equiv 0 \pmod{m_i} Mj0(modmi)

∴ a i M i t i + m j M j t j ≡ a i ( m o d m i ) \therefore a_iM_it_i+m_jM_jt_j \equiv a_i \pmod{m_i} aiMiti+mjMjtjai(modmi)

∴ a i M i t i + ∑ j = 1 , i ≠ j n a j M j t j ≡ a i ( m o d m i ) \therefore a_iM_it_i + \sum\limits^n_{j=1,i\ne j} a_jM_jt_j \equiv a_i \pmod{m_i} aiMiti+j=1,i=jnajMjtjai(modmi)

∑ i = 1 n a i M i t i ≡ a i ( m o d m i ) \sum\limits^n_{i=1} a_iM_it_i \equiv a_i \pmod{m_i} i=1naiMitiai(modmi)

这就验证了 x = ∑ i = 1 n a i M i t i x=\sum\limits^n_{i=1} a_iM_it_i x=i=1naiMiti 是方程组的一组特解。

运用小学知识(其实就是我懒得证明)可得每两组相邻特解之间相差为 M M M 的倍数,于是 x + k M x+kM x+kM 也是一个特解,由此,通解唯一性得证。

例题

P1495 【模板】中国剩余定理(CRT)/ 曹冲养猪

模板题,直接上代码。

#include<bits/stdc++.h>
#define XD 114514
#define MAXN 20
#define int long long
using namespace std;
int n;
void gg(int &x,int &y,int a,int b){//求逆元
	if(a%b==0){
		x=0,y=1;
		return;
	}
	gg(y,x,b,a%b);
	y-=a/b*x;
}
int a[MAXN],b[MAXN],M[MAXN],m=1,t[MAXN],ans;
signed main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i]>>b[i];//x=ai*k+bi -> x mod ai=bi mod ai
		m*=a[i];
	}
	for(int i=1;i<=n;i++){
		M[i]=m/a[i];
		int x=0,y=0;
		gg(x,y,M[i],a[i]);
		t[i]=(x%a[i]+a[i])%a[i];
	}
	for(int i=1;i<=n;i++){
		ans+=b[i]*t[i]%m*M[i]%m;
		ans%=m;
	}
	cout<<ans;
	return 0;
}

P3868 [TJOI2009] 猜数字

b ∣ ( n − a i ) b | (n-a_i) b(nai)

n − a i ≡ 0 ( m o d b i ) n-a_i \equiv 0 \pmod{b_i} nai0(modbi)

n ≡ a i ( m o d b i ) n \equiv a_i \pmod{b_i} nai(modbi)

然后套模板即可。

Lucas定理

定义

对于一个质数 p p p

( n m )   m o d   p = ( ⌊ n p ⌋ ⌊ m p ⌋ ) ⋅ ( n   m o d   p m   m o d   p )   m o d   p \dbinom{n}{m} \bmod p =\dbinom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \cdot \dbinom{n \bmod p}{m \bmod p}\bmod p (mn)modp=(pmpn)(mmodpnmodp)modp

变成我更习惯的写法就是:

C n m   m o d   p = C ⌊ n p ⌋ ⌊ m p ⌋ ⋅ C n   m o d   p m   m o d   p   m o d   p C^m_n \bmod p = C^{\lfloor \frac{m}{p} \rfloor}_ {\lfloor \frac{n}{p} \rfloor} \cdot C^{m \bmod p}_ {n \bmod p} \bmod p Cnmmodp=CpnpmCnmodpmmodpmodp

证明我暂时不会,先放个链接QWQ。

链接

p p p 不为质数时,就需要用到 exLucas 定理了。

具体的上面的链接也有,我就不说了QWQ。(其实我就是不会

例题

P3807 【模板】卢卡斯定理/Lucas 定理

模板题。听君一席话,如听一席话。

直接上代码。

#include<bits/stdc++.h>
#define XD 114514

using namespace std;
int t;
int qpow(int x,int y,int p){//快速幂 
	int ans=1;
	while(y){
		if(y&1) ans=1ll*ans*x%p;
		x=1ll*x*x%p;
		y>>=1;
	}
	return ans;
}
int C(int n,int m,int p){//组合数 
	if(n<m) return 0;
	int a=1,b=1;
	for(int i=1;i<=n;i++) a=1ll*a*i%p;
	for(int i=1;i<=m;i++) b=1ll*b*i%p;
	for(int i=1;i<=n-m;i++) b=1ll*b*i%p;
	return 1ll*a*qpow(b,p-2,p)%p;
}
int Lucas(int n,int m,int p){//Lucas 递推 
	if(n<p and m<p) return C(n,m,p);
	return 1ll*Lucas(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
int main(){
	cin>>t;
	while(t--){
		int n,m,p;
		cin>>n>>m>>p;
		cout<<Lucas(n+m,m,p)<<'\n';
	}
	return 0;
}

容斥原理

首先我把关于容斥原理的符号及定义复制下来以便以后查看

以下内容来自 这里

说句闲话,我开始了解集合也是开始于上面的链接。

+++++++++++++++ 虚假分割线 ++++++++++++++++++

集合是数学中的一个概念,用通俗的话来讲就是:一大堆数在一起就构成了集合。

集合有如下的特性:

  • 无序性:任一个集合中,每个元素的地位都是相同的,元素之间是无序的。

  • 互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。

  • 确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

元素 a a a 属于集合 A A A 记作 a ∈ A a\in A aA,反之则记作 a ∉ A a\notin A a/A

如果对于任意集合 A A A 内的元素 a a a,都有 a ∈ B a\in B aB,则称 A A A B B B 的子集,记作 A ⊆ B A\subseteq B AB

若集合 A A A B B B 满足集合 A A A 中的元素都能够在 B B B 中找到,且集合 B B B 中的元素都能在 A A A 中找到,则称集合 A A A B B B 相等,记作 A = B A=B A=B

若一个集合中不存在任何元素,则称该集合为空集,记作 ∅ \varnothing 。空集是所有集合的子集。

一个集合内的元素个数称为该集合的大小。 A A A 集合的大小可记作 ∣ A ∣ |A| A

集合 C C C 是集合 A A A B B B 的交集,当且仅当对于任何元素 a ∈ C a\in C aC,有 a ∈ A a\in A aA a ∈ B a\in B aB,并且对于任何元素 b ∉ C b\notin C b/C,有 b ∉ A b\notin A b/A b ∉ B b\notin B b/B。记作 C = A ∩ B C=A\cap B C=AB

集合 C C C 是集合 A A A B B B 的并集,当且仅当对于任何元素 a ∈ C a\in C aC,有 a ∈ A a\in A aA a ∈ B a\in B aB,并且对于任何元素 b ∉ C b\notin C b/C,有 b ∉ A b\notin A b/A b ∉ B b\notin B b/B。记作 C = A ∪ B C=A\cup B C=AB

简单地说,交集是由所有同时属于两个集合的元素所构成的,就像两个集合相交;而并集是由所有属于其中任意一个集合的元素所构成的,就像两个集合合并。

设集合 A ⊆ U A\subseteq U AU,称集合 B B B 为集合 A A A 关于集合 U U U 的补集,当且仅当 B B B 集合内的所有元素恰好为所有属于 U U U 集合但不属于 A A A 集合的元素。记作 B = ∁ U A B=\complement_UA B=UA。显然可以得到这样的一个式子: ∣ U ∣ = ∣ A ∣ + ∣ ∁ U A ∣ |U|=|A|+|\complement_UA| U=A+UA,对于任何 A ⊆ U A \subseteq U AU 成立。

简单地说,补集就是与一个集合互补的集合,每个元素恰好在其中两者之一。

特别地,对于形如 { x ∣ a ≤ x ≤ b } \{x|a\le x\le b\} {xaxb} 的集合,可以记作 [ a , b ] [a,b] [a,b]。其中,如果左侧符号改为小于号,则左侧中括号改为小括号。右侧同理。

+++++++++++++++ 虚假分割线 ++++++++++++++++++

我们有 A , B , C A,B,C A,B,C 三个集合,求 ∣ A ∪ B ∪ C ∣ |A \cup B \cup C| ABC ,可以列出式子:

∣ A ∪ B ∪ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ∩ B ∣ − ∣ A ∩ C ∣ − ∣ B ∩ C ∣ + ∣ A ∩ B ∩ C ∣ |A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| ABC=A+B+CABACBC+ABC

如果我们有 n n n 个集合 P 1 , P 2 , . . . , P n P_1,P_2,...,P_n P1,P2,...,Pn,则:

∣ ⋃ i = 1 n P i ∣ = ∑ S ⊆ [ 1 , 2 , . . . , n ] ( − 1 ) ∣ S ∣ − 1 ∣ ⋂ s ∈ S P s ∣ |\bigcup\limits_{i=1}^n P_i|=\sum\limits_{S\subseteq[1,2,...,n]}(-1)^{|S|-1}|\bigcap\limits_{s\in S}P _ s| i=1nPi=S[1,2,...,n](1)S1sSPs

二项式定理

这个主要说的就是 ( n m ) \dbinom{n}{m} (mn) 这东西。

由于这个可能要写的很多,所以我把它放在一篇单独的博客上。

二项式定理


暂时完结撒花!!!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值