题意:求满足x∈(1,m),y∈(1,n),且gcd(x,y)=dx\in(1,m),y\in(1,n),且gcd(x,y)=dx∈(1,m),y∈(1,n),且gcd(x,y)=d的数的个数
考虑到我们要求
f(d)=∑i=1m∑j=1n[gcd(i,j)=d]f(d)=\sum_{i=1}^{m}\sum_{j=1}^{n} [gcd(i,j)=d]f(d)=i=1∑mj=1∑n[gcd(i,j)=d]
∑i=1⌊md⌋∑j=1⌊nd⌋[gcd(i,j)=1]\sum_{i=1}^{\lfloor \frac m d\rfloor}\sum_{j=1}^{\lfloor \frac n d \rfloor} [gcd(i,j)=1]i=1∑⌊dm⌋j=1∑⌊dn⌋[gcd(i,j)=1]
那么ans=f(d)=∑i=1m∑j=1n[gcd(i,j)=d]ans=f(d)=\sum_{i=1}^{m}\sum_{j=1}^{n} [gcd(i,j)=d]ans=f(d)=i=1∑mj=1∑n[gcd(i,j)=d]
=∑i=1⌊im⌋∑j=1⌊nd⌋[gcd(i,j)=1]=f(1)(n/=d,m/=d) =\sum_{i=1}^{\lfloor \frac i m\rfloor}\sum_{j=1}^{\lfloor \frac n d \rfloor} [gcd(i,j)=1]=f(1)(n/=d,m/=d) =i=1∑⌊mi⌋j=1∑⌊dn⌋[gcd(i,j)=1]=f(1)(n/=d,m/=d)
我们发现求[gcd(i,j)=1][gcd(i,j)=1][gcd(i,j)=1]的复杂度是O(n2)O(n^2)O(n2)的
怎么办?
考虑在[gcd(i,j)=d]=1[gcd(i,j)=d]=1[gcd(i,j)=d]=1时,我们发现肯定d∣i,d∣jd|i,d|jd∣i,d∣j,
但是对于很多种ddd的倍数的i,ji,ji,j都只是gcd(i,j)=dp,p≥2,p∈Ngcd(i,j)=dp,p\geq 2,p\in\Ngcd(i,j)=dp,p≥2,p∈N
那我们考虑设F(x)=∑i=1m∑j=1n[gcd(i,j)为d的倍数]F(x)=\sum_{i=1}^{m}\sum_{j=1}^{n}[gcd(i,j)为d的倍数]F(x)=i=1∑mj=1∑n[gcd(i,j)为d的倍数]
即F(x)=∑i=1m∑j=1n[d∣gcd(i,j)]=⌊md⌋⌊nd⌋F(x)=\sum_{i=1}^{m}\sum_{j=1}^{n}[d|gcd(i,j)]=\lfloor \frac m d \rfloor \lfloor \frac n d \rfloorF(x)=i=1∑mj=1∑n[d∣gcd(i,j)]=⌊dm⌋⌊dn⌋
那么显然有F(d)=∑d∣nf(n)F(d)=\sum_{d|n} f(n)F(d)=d∣n∑f(n)
既然F(x)F(x)F(x)和f(x)f(x)f(x)之间有规律而且F(x)F(x)F(x)有很好求
我们想到如果能求出f(x)f(x)f(x)和F(x)F(x)F(x)的关系
这时就用到了莫比乌斯反演了
f(x)=∑x∣dμ(dx)F(d)=∑x∣dμ(dx)⌊md⌋⌊nd⌋f(x)=\sum_{x|d}\mu(\frac d x)F(d)=\sum_{x|d}\mu(\frac d x)\lfloor \frac m d \rfloor \lfloor \frac n d \rfloorf(x)=x∣d∑μ(xd)F(d)=x∣d∑μ(xd)⌊dm⌋⌊dn⌋
考虑到我们要求的是f(1)=∑i=1min(nd,md)μ(i)⌊mi⌋⌊ni⌋f(1)=\sum_{i=1}^{min(\frac n d,\frac m d)} \mu(i)\lfloor \frac m i \rfloor \lfloor \frac n i \rfloorf(1)=i=1∑min(dn,dm)μ(i)⌊im⌋⌊in⌋
这样一次回答的复杂度就是O(n)O(n)O(n)了
考虑到多次询问,式子里有整除,可以用整除分块预处理μ\muμ前缀和O(n+m)O(\sqrt n+\sqrt m)O(n+m)求出答案
代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
return res*f;
}
const int N=50005;
int vis[N],pr[N],mu[N],sum[N],tot;
inline void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!vis[i])pr[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pr[j]<N;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0)break;
mu[i*pr[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)sum[i]=sum[i-1]+mu[i];
}
signed main(){
int T=read();init();
for(int cas=1;cas<=T;cas++){
int b=read(),d=read(),k=read();
if(k==0){puts("0");continue;}
ll ans=0;b/=k,d/=k;int p=min(b,d);
for(int i=1,nxt;i<=p;i=nxt+1){
nxt=min((b/(b/i)),(d/(d/i)));
ans+=(1ll*(sum[nxt]-sum[i-1])*(b/i)*(d/i));
}
cout<<ans<<'\n';
}
}