计蒜客NOIP模拟赛(2) D2T2紫色百合

【问题描述】

 

牵着你的手的是她,路边开满了紫色的百合花……”

 

你从梦中醒来,却依然忘不了梦中的百合花,每朵百合花都有一个权值,在二进制下写成一行‘1’,第i朵紫色百合的权值在二进制下写成i个‘1’。你想挑出其中一些组成“一束百合花”且价值在二进制下恰好为一个‘1’后面P个‘0’,那么有多少种挑选方案呢?

 

定义“一束百合花”的价值为这些百合花组成的集合的所有子集的权值乘积的和(空集的权值乘积算1)。如价值为13组成的一束百合花价值为1+1+3+1*3=8

 

【输入格式】

 

一行两个正整数N,P,含义如题目中所示n,p<=100000

 

【输出格式】

 

一个整数代表方案数模 998244353 的结果

 

【样例输入1

 

3 3

 

【样例输出1

 

2

 

【样例输入2

 

233 666

 

【样例输出2

 

572514965

 

 

稍稍运用一下数学知识发现题目要求的是选出的集合每个元素+1之后的乘积等于2^P的方案数,取个log就变成了↓

 

1~N选若干个数使得总和等于P,求方案数

 

然后用普通的背包DP可以就拿到60分了

 

 

 然后我们发现,由于物品大小是1~N,所以最多选取O(sqrt(P))个物品,背包就满了

满分做法可以用状态f[i][j]表示选i个物品,占容量为j的方案数

由于每个背包是不同的,所以根据已选的最小的物品分类讨论一下:

如果最小的物品是1,相当于i-1个物品凑出了j-i的大小,然后整体+1

如果最小的物品不是1,相当于i个物品凑出了j-i的大小,然后整体+1

需要注意我们要防止出现选择了大小为N+1的物品的情况,所以需要减去

得到递推式f[i][j]=f[i-1][j-i]+f[i][j-i]-f[i-1][j-(N+1)]

时间复杂度O(Nsqrt(N))

 

 

 

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 typedef long long lol;
 7 lol Mod=998244353;
 8 int f[451][100011];
 9 lol ans;
10 lol n,p;
11 int main()
12 {lol i,j;
13     cin>>n>>p;
14     f[0][0]=1;
15     for (i=1;i*(i+1)/2<=p;i++)
16     {
17         for (j=i;j<=p;j++)
18         {
19             f[i][j]=f[i-1][j-i]+f[i][j-i];
20             if (j>=(n+1)) f[i][j]-=f[i-1][j-n-1];
21             if (f[i][j]<0) f[i][j]+=Mod;
22             if (f[i][j]>=Mod) f[i][j]-=Mod;
23         }
24         ans=(ans+f[i][p])%Mod;
25     }
26     cout<<ans%Mod;
27 }

 

 

 

 

 

【问题描述】

牵着你的手的是她,路边开满了紫色的百合花……”

你从梦中醒来,却依然忘不了梦中的百合花,每朵百合花都有一个权值,在二进制下写成一行‘1’,第i朵紫色百合的权值在二进制下写成i个‘1’。你想挑出其中一些组成“一束百合花”且价值在二进制下恰好为一个‘1’后面P个‘0’,那么有多少种挑选方案呢?

定义“一束百合花”的价值为这些百合花组成的集合的所有子集的权值乘积的和(空集的权值乘积算1)。如价值为13组成的一束百合花价值为1+1+3+1*3=8

【输入格式】

一行两个正整数N,P,含义如题目中所示

【输出格式】

一个整数代表方案数模 998244353 的结果

【样例输入1

3 3

【样例输出1

2

【样例输入2

233 666

【样例输出2

572514965


【数据范围与约定】

 

测试点编号

N

P

1

8

100

2

12

100

3

15

100

4

100

100

5

1000

1000

6

2000

2000

7

100000

100000

8

100000

100000

9

100000

100000

10

100000

100000


 

转载于:https://www.cnblogs.com/Y-E-T-I/p/7496356.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值