hdu2586How far away ?(LCA LCATarjan离线)

题目链接acm.hdu.edu.cn/showproblem.php?pid=2586

题目大意:有n个点,同n-1条带有权值的双向边相连,有m个询问,每个询问包含两个数x,y,求x与y的最短距离。

例:

Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
 
2 2
1 2 100
1 2
2 1

 

Sample Output
10
25
100
100
 
解题思路:因为n个节点,含有n-1条边,我们可以把它看成一颗树,然后我们把1号节点看成这颗树的根节点,这样我们计算任意两个点x,y的最短距离就可以简单表示为dis[x]+dis[y]-2*dis[lca(x,y)](其中dis[i]表示节点i到根节点的距离,lca(x,y)表示x,y的最近公共祖先)。
如果不会Tarjan离线算法可以看这个博客,http://www.cnblogs.com/JVxie/p/4854719.html,非常简单易懂。
直接用Tarjan离线算法模板便可求出答案。
 
附上代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define maxn 400005
struct node{
    int x,y;
};
vector<node> edge[maxn],que[maxn];
int ans[maxn],dis[maxn],par[maxn],vis[maxn];
//ans[i]表示第i次询问的答案,dis[i]表示i号节点与根节点的距离
//par[i]表示i号节点的父亲节点 
int n,m;

void init()
{
    for(int i=1;i<=n;i++)
    {
        edge[i].clear();
        que[i].clear();
        par[i]=i;
        ans[i]=0;
        dis[i]=0;
        vis[i]=0;
    }
}
int find(int x)
{
    if(x==par[x])
        return x;
    else
        return par[x]=find(par[x]);
}
void unite(int x,int y)
{
    int fatherx=find(x),fathery=find(y);
    if(fatherx!=fathery)
        par[fathery]=fatherx;
}
void TarjanLCA(int x)
{
    vis[x]=1;
    for(int i=0;i<edge[x].size();i++)
    {
        int v=edge[x][i].x;
        if(!vis[v])
        {
            dis[v]=dis[x]+edge[x][i].y;
            TarjanLCA(v);
            unite(x,v);
        }
    }
    for(int i=0;i<que[x].size();i++)
    {
        int v=que[x][i].x;
        if(vis[v])
            ans[que[x][i].y]=dis[x]+dis[v]-2*dis[find(v)];
    }
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i=1;i<n;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            edge[u].push_back({v,w});
            edge[v].push_back({u,w});
        }
        for(int i=1;i<=m;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            que[x].push_back({y,i});//i表示第几次询问,便于输出 
            que[y].push_back({x,i});
        }
        TarjanLCA(1);
        for(int i=1;i<=m;i++)
            printf("%d\n",ans[i]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/zjl192628928/p/9723324.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值